You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

186 lines
6.7 KiB

from svgpathtools import svg2paths, Line, QuadraticBezier, CubicBezier
import numpy as np
import bezier, math
def triangulate_lengths(settings, dest_xy):
left_pulley_position = (settings.left_pulley_x_offset, -settings.pulley_y_droop)
right_pulley_position = (settings.right_pulley_x_offset + settings.canvas_x, -settings.pulley_y_droop)
right_squared_x = pow(right_pulley_position[0] - dest_xy[0], 2)
right_squared_y = pow(right_pulley_position[1] - dest_xy[1], 2)
left_squared_x = pow(left_pulley_position[0] - dest_xy[0], 2)
left_squared_y = pow(left_pulley_position[1] - dest_xy[1], 2)
right_pulley_length = math.sqrt(right_squared_x + right_squared_y)
left_pulley_length = math.sqrt(left_squared_x + left_squared_y)
return left_pulley_length, right_pulley_length
# http://paulbourke.net/geometry/circlesphere/
# https://math.stackexchange.com/questions/187107/calculate-coordinates-of-3rd-point-vertex-of-a-scalene-triangle-if-angles-and
# http://xaktly.com/MathNonRightTrig.html
def untriangulate_lengths(settings, x, y):
r0 = x
r1 = y
r2 = settings.distance_between_centers
a = (pow(r0, 2) - pow(r1, 2) + pow(r2, 2)) / (2 * r2)
h = math.sqrt(pow(r0, 2) - pow(a, 2))
a = a + settings.left_pulley_x_offset
h = h - settings.pulley_y_droop
return a, h
class Svg2GcodeConverter:
def __init__(self, settings):
self.settings = settings
# First cycle base case flag
self.started = False
starting_xy = triangulate_lengths(self.settings, (self.settings.canvas_x/2, 0))
self.gcode_preamble = '''
G91 ; Set to relative mode for the initial pen lift
G1 Z1 ; Lift head by 1
G0 F{1} ; Set the feed rate
G1 Z{0} ; Move the pen to just above the paper
G90
G92 X{2} Y{3}
'''.format(1, self.settings.speed, starting_xy[0], starting_xy[1])
self.gcode_end = '''
G1 Z{0} F7000 ; Raise the pen
'''.format(1)
# From an input svg file, convert the vector svg paths to gcode tool paths
def convert_gcode(self):
# read in the svg
paths, attributes = svg2paths("tmp/conversion-output.svg")
# Find the scale value by resizing based on the svg bounding size
bounding_x_max = None
bounding_x_min = None
bounding_y_max = None
bounding_y_min = None
for path in paths:
bbox = path.bbox()
if bounding_x_max is None:
bounding_x_max = bbox[0]
if bounding_x_min is None:
bounding_x_min = bbox[1]
if bounding_y_max is None:
bounding_y_max = bbox[2]
if bounding_y_min is None:
bounding_y_min = bbox[3]
bounding_x_min = min(bbox[0], bounding_x_min)
bounding_x_max = max(bbox[1], bounding_x_max)
bounding_y_min = max(bbox[2], bounding_y_min)
bounding_y_max = max(bbox[3], bounding_y_max)
print("Maximum X : {:.2f}".format(bounding_x_max))
print("Minimum Y : {:.2f}".format(bounding_x_min))
print("Maximum X : {:.2f}".format(bounding_y_max))
print("Minimum Y : {:.2f}".format(bounding_y_min))
max_x_dim = max(bounding_x_max, bounding_x_min)
max_y_dim = max(bounding_y_max, bounding_y_min)
scale_x = self.settings.canvas_x / max_x_dim
scale_y = self.settings.canvas_y / max_y_dim
scale = min(scale_x, scale_y)
print("Scaling to : {:.5f}\n".format(scale))
# Start the gcode
gcode = ""
gcode += self.gcode_preamble
# Walk through the paths and create the GCODE
for path in paths:
previous_x = None
previous_y = None
for part in path:
start = part.start
end = part.end
start_x = start.real * scale
start_y = start.imag * scale
end_x = end.real * scale
end_y = end.imag * scale
# Check to see if the endpoint of the last cycle continues and whether we need to lift the pen or not
lift = True
if previous_x is not None and previous_y is not None:
if abs(start.real - previous_x) < 30 and abs(start.imag - previous_y) < 30:
lift = False
# if the pen needs to lift,
# if lift:
previous_x = end.real
previous_y = end.imag
if lift:
gcode += "G1 Z{:.3f}\n".format(1)
else:
gcode += "; NOT LIFTING [{}]\n".format(self.settings.lift_counter)
if isinstance(part, CubicBezier):
nodes = np.asfortranarray([
[start.real, part.control1.real, part.control2.real, end.real],
[start.imag, part.control1.imag, part.control2.imag, end.imag],
])
curve = bezier.Curve.from_nodes(nodes)
evals = []
pos = np.linspace(0.1, 1, 3)
for i in pos:
evals.append(curve.evaluate(i))
lengths = triangulate_lengths(self.settings, (start_x, start_y))
# gcode += "; Setting down tip at beginning of line ({}, {})\n".format(start_x, start_y)
gcode += "G1 X{:.3f} Y{:.3f}\n".format(lengths[0], lengths[1])
gcode += "G1 Z{:.3f} \n".format(0)
for i in evals:
x = i[0][0]
y = i[1][0]
tmp_len = triangulate_lengths(self.settings, (x * scale, y * scale))
# gcode += "; Continuing the line ({}, {})\n".format(x * scale, y * scale)
gcode += "G1 X{:.3f} Y{:.3f}\n".format(tmp_len[0], tmp_len[1])
if isinstance(part, Line):
start_len = triangulate_lengths(self.settings, (start_x, start_y))
end_len = triangulate_lengths(self.settings, (end_x, end_y))
# gcode += "; Setting down tip at beginning of line ({}, {})\n".format(start_x, start_y)
gcode += "G1 X{:.3f} Y{:.3f}\n".format(start_len[0], start_len[1])
gcode += "G1 Z{:.3f} \n".format(0)
# gcode += "; Moving tip to the end of the line ({}, {})\n".format(end_x, end_y)
gcode += "G1 X{:.3f} Y{:.3f}\n".format(end_len[0], end_len[1])
gcode += self.gcode_end
output_gcode = open("output/gcode-output.gcode", "w")
output_gcode.write(gcode)
output_gcode.close()