From 5928eb5dde3f5e75f6c3bd977469034af5f006da Mon Sep 17 00:00:00 2001 From: mitchellhansen Date: Wed, 17 Jul 2019 21:53:22 -0700 Subject: [PATCH] getting close, something wrong with copying the buffer. Probably the format that I've selected --- resources/shaders/simple-edge.compute | 70 ++--- resources/shaders/simple_texture.fragment | 13 +- src/vkprocessor.rs | 309 ++++++++++++---------- 3 files changed, 218 insertions(+), 174 deletions(-) diff --git a/resources/shaders/simple-edge.compute b/resources/shaders/simple-edge.compute index fd90041e..e2c7d2d8 100644 --- a/resources/shaders/simple-edge.compute +++ b/resources/shaders/simple-edge.compute @@ -33,37 +33,45 @@ uint get_idx(int offset_x, int offset_y){ void main() { - uint idx = get_idx(0,0); - - ivec4 p = separate(read_buffer.buf[get_idx(0 , 0)]); - ivec4 p0 = separate(read_buffer.buf[get_idx(0 , 1)]); - ivec4 p1 = separate(read_buffer.buf[get_idx(0 ,-1)]); - ivec4 p2 = separate(read_buffer.buf[get_idx(1 , 1)]); - ivec4 p3 = separate(read_buffer.buf[get_idx(-1,-1)]); - ivec4 p4 = separate(read_buffer.buf[get_idx(1 , 0)]); - ivec4 p5 = separate(read_buffer.buf[get_idx(-1, 0)]); - ivec4 p6 = separate(read_buffer.buf[get_idx(1 ,-1)]); - ivec4 p7 = separate(read_buffer.buf[get_idx(-1, 1)]); - - ivec3 d0 = abs(p0.xyz - p1.xyz); - ivec3 d1 = abs(p2.xyz - p3.xyz); - ivec3 d2 = abs(p4.xyz - p5.xyz); - ivec3 d3 = abs(p6.xyz - p7.xyz); - - ivec3 m = max(max(max(d0, d1), d2), d3); - - if ((m.x + m.y + m.z) > 275){ - p.x = 0; - p.y = 0; - p.z = 255; - } - - //p.z = max(p.z - (d0.x + d0.y + d0.z + d1.x + d1.y + d1.z)/5, 0); - - write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x000000FF) ) | (p.x); - write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8); - write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16); - write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24); + uint idx = get_idx(0,0); + + ivec4 p = separate(read_buffer.buf[get_idx(0 , 0)]); +// ivec4 p0 = separate(read_buffer.buf[get_idx(0 , 1)]); +// ivec4 p1 = separate(read_buffer.buf[get_idx(0 ,-1)]); +// ivec4 p2 = separate(read_buffer.buf[get_idx(1 , 1)]); +// ivec4 p3 = separate(read_buffer.buf[get_idx(-1,-1)]); +// ivec4 p4 = separate(read_buffer.buf[get_idx(1 , 0)]); +// ivec4 p5 = separate(read_buffer.buf[get_idx(-1, 0)]); +// ivec4 p6 = separate(read_buffer.buf[get_idx(1 ,-1)]); +// ivec4 p7 = separate(read_buffer.buf[get_idx(-1, 1)]); + +// ivec3 d0 = abs(p0.xyz - p1.xyz); +// ivec3 d1 = abs(p2.xyz - p3.xyz); +// ivec3 d2 = abs(p4.xyz - p5.xyz); +// ivec3 d3 = abs(p6.xyz - p7.xyz); + +// ivec3 m = max(max(max(d0, d1), d2), d3); + +// if ((m.x + m.y + m.z) > 275){ +// p.x = 0; +// p.y = 0; +// p.z = 255; +// } + +// //p.z = max(p.z - (d0.x + d0.y + d0.z + d1.x + d1.y + d1.z)/5, 0); + +// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x000000FF) ) | (p.x); +// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8); +// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16); +// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24); + +// p.x = 70; + +// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x000000FF) ) | (p.x); +// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8); +// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16); +// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24); + // read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x000000FF) ) | (p.x); // read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8); diff --git a/resources/shaders/simple_texture.fragment b/resources/shaders/simple_texture.fragment index 3a91974e..95dbbb13 100644 --- a/resources/shaders/simple_texture.fragment +++ b/resources/shaders/simple_texture.fragment @@ -4,5 +4,16 @@ layout(location = 0) out vec4 f_color; layout(set = 0, binding = 0) uniform sampler2D tex; layout(set = 0, binding = 1, rgba8ui) readonly uniform uimage2D img; void main() { - f_color = texture(tex, tex_coords); + + vec2 onePixel = vec2(1.0, 1.0) / (720.0, 756.0); + vec2 pos = tex_coords + onePixel * vec2(0, 0); + ivec2 ipos = ivec2(pos); + vec4 colorSum = imageLoad(img, ipos); + f_color = colorSum; + + + // f_color = texture(tex, tex_coords); + // ivec2 t = ivec2(tex_coords.x, tex_coords.y ); + + } \ No newline at end of file diff --git a/src/vkprocessor.rs b/src/vkprocessor.rs index a984e66d..8bbbfbe1 100644 --- a/src/vkprocessor.rs +++ b/src/vkprocessor.rs @@ -262,9 +262,16 @@ impl<'a> VkProcessor<'a> { options.add_macro_definition("SETTING_BUCKETS_START", Some("2")); options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2")); - let shader = - sr::load(vertex_shader_path, fragment_shader_path) - .expect("Failed to compile"); + let shader = sr::load(vertex_shader_path, fragment_shader_path).expect(""); +// let shader = match sr::load(vertex_shader_path, fragment_shader_path) { +// Ok(t) => t, +// Err(e) => { +// +// panic!(e); +// } +// }; + + let vulkano_entry = sr::parse(&shader) @@ -327,42 +334,6 @@ impl<'a> VkProcessor<'a> { self.render_pass = Some(render_pass); - let (texture, tex_future) = { - let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"), - ImageFormat::JPEG).unwrap().to_rgba(); - let dimensions = image.dimensions(); - let image_data = image.into_raw().clone(); - - ImmutableImage::from_iter( - image_data.iter().cloned(), - Dimensions::Dim2d { width: dimensions.0, height: dimensions.1 }, - Format::R8G8B8A8Srgb, - self.queue.clone() - ).unwrap() - }; - - let attachment_image = { - let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"), - ImageFormat::JPEG).unwrap().to_rgba(); - let dimensions = image.dimensions(); - let image_data = image.into_raw().clone(); - - let mut usage = ImageUsage::none(); - usage.transfer_destination = true; - usage.storage = true; - - AttachmentImage::with_usage( - self.device.clone(), - [dimensions.0, dimensions.1], - Format::R8G8B8A8Uint, - usage) - }; - - let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear, - MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, - SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(); - - // Before we draw we have to create what is called a pipeline. This is similar to an OpenGL // program, but much more specific. let pipeline = GraphicsPipeline::start() @@ -396,16 +367,8 @@ impl<'a> VkProcessor<'a> { .build(self.device.clone()) .unwrap(); - self.graphics_pipeline = Some(Arc::new(pipeline)); - self.img_set = Some(Arc::new(PersistentDescriptorSet::start(self.graphics_pipeline.clone().unwrap().clone(), 0) - .add_sampled_image(texture.clone(), sampler.clone()).unwrap() - .add_image(attachment_image.clone().unwrap().clone()).unwrap() - .build().unwrap())); - - self.graphics_image_buffer = Some(texture.clone()); - self.graphics_iamge_swap_buffer = Some(attachment_image.clone().unwrap()); } @@ -430,6 +393,150 @@ impl<'a> VkProcessor<'a> { self.images = Some(new_images); } + pub fn load_buffers(&mut self, image_filename: String) + { + let project_root = + std::env::current_dir() + .expect("failed to get root directory"); + + let mut compute_path = project_root.clone(); + compute_path.push(PathBuf::from("resources/images/")); + compute_path.push(PathBuf::from(image_filename)); + + let img = image::open(compute_path).expect("Couldn't find image"); + + self.xy = img.dimensions(); + + let data_length = self.xy.0 * self.xy.1 * 4; + let pixel_count = img.raw_pixels().len(); + println!("Pixel count {}", pixel_count); + + if pixel_count != data_length as usize { + println!("Creating apha channel..."); + for i in img.raw_pixels().iter() { + if (self.image_buffer.len() + 1) % 4 == 0 { + self.image_buffer.push(255); + } + self.image_buffer.push(*i); + } + self.image_buffer.push(255); + } else { + self.image_buffer = img.raw_pixels(); + } + + println!("Buffer length {}", self.image_buffer.len()); + println!("Size {:?}", self.xy); + + println!("Allocating Buffers..."); + + // Pull out the image data and place it in a buffer for the kernel to write to and for us to read from + let write_buffer = { + let mut buff = self.image_buffer.iter(); + let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); + CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap() + }; + + + // Pull out the image data and place it in a buffer for the kernel to read from + let read_buffer = { + let mut buff = self.image_buffer.iter(); + let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); + CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap() + }; + + + // A buffer to hold many i32 values to use as settings + let settings_buffer = { + let vec = vec![self.xy.0, self.xy.1]; + let mut buff = vec.iter(); + let data_iter = + (0..2).map(|n| *(buff.next().unwrap())); + CpuAccessibleBuffer::from_iter(self.device.clone(), + BufferUsage::all(), + data_iter).unwrap() + }; + + println!("Done"); + + // Create the data descriptor set for our previously created shader pipeline + let mut set = + PersistentDescriptorSet::start(self.compute_pipeline.clone().unwrap().clone(), 0) + .add_buffer(write_buffer.clone()).unwrap() + .add_buffer(read_buffer.clone()).unwrap() + .add_buffer(settings_buffer.clone()).unwrap(); + + self.compute_set = Some(Arc::new(set.build().unwrap())); + + self.img_buffers.push(write_buffer); + self.img_buffers.push(read_buffer); + self.settings_buffer = Some(settings_buffer); + + + // We now create a buffer that will store the shape of our triangle. + let vertex_buffer = { + vulkano::impl_vertex!(tVertex, position); + + CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [ + tVertex { position: [-1.0, -1.0 ] }, + tVertex { position: [-1.0, 1.0 ] }, + tVertex { position: [ 1.0, 1.0 ] }, + tVertex { position: [ 1.0, -1.0 ] }, + ].iter().cloned()).unwrap() + }; + + self.vertex_buffer = Some(vertex_buffer); + + let (texture, tex_future) = { + let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"), + ImageFormat::JPEG).unwrap().to_rgba(); + + println!("{}", image.len()); + println!("{}", self.image_buffer.len()); + + let dimensions = image.dimensions(); + let image_data = image.into_raw().clone(); + + ImmutableImage::from_iter( + image_data.iter().cloned(), + Dimensions::Dim2d { width: dimensions.0, height: dimensions.1 }, + Format::R8G8B8A8Srgb, + self.queue.clone() +// self.image_buffer.iter().cloned(), +// Format::R8G8B8A8Uint, + + ).unwrap() + }; + + let attachment_image = { + let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"), + ImageFormat::JPEG).unwrap().to_rgba(); + let dimensions = image.dimensions(); + let image_data = image.into_raw().clone(); + + let mut usage = ImageUsage::none(); + usage.transfer_destination = true; + usage.storage = true; + + AttachmentImage::with_usage( + self.device.clone(), + [dimensions.0, dimensions.1], + Format::R8G8B8A8Uint, + usage) + }; + + let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear, + MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, + SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(); + + + self.img_set = Some(Arc::new(PersistentDescriptorSet::start(self.graphics_pipeline.clone().unwrap().clone(), 0) + .add_sampled_image(texture.clone(), sampler.clone()).unwrap() + .add_image(attachment_image.clone().unwrap().clone()).unwrap() + .build().unwrap())); + + self.graphics_image_buffer = Some(texture.clone()); + self.graphics_iamge_swap_buffer = Some(attachment_image.clone().unwrap()); + } pub fn run(&mut self, surface: &'a Arc>, mut frame_future: Box) -> Box { @@ -490,7 +597,8 @@ impl<'a> VkProcessor<'a> { self.compute_pipeline.clone().unwrap().clone(), self.compute_set.clone().unwrap().clone(), ()).unwrap() - //.copy_buffer_to_image(self.img_buffers.get(0).unwrap().clone(), self.graphics_image_buffer.clone().unwrap()).unwrap() + .copy_buffer_to_image(self.img_buffers.get(0).unwrap().clone(), + self.graphics_iamge_swap_buffer.clone().unwrap()).unwrap() .begin_render_pass(framebuffers[image_num].clone(), false, clear_values) .unwrap() @@ -504,6 +612,16 @@ impl<'a> VkProcessor<'a> { .build().unwrap(); + let mut data_buffer_content = self.img_buffers.get(0).unwrap().read().unwrap(); + let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| { + let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8; + let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8; + let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8; + let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8; + + image::Rgba([r, g, b, a]) + }); + // Wait on the previous frame, then execute the command buffer and present the image let future = frame_future.join(acquire_future) .then_execute(self.queue.clone(), command_buffer).unwrap() @@ -526,100 +644,6 @@ impl<'a> VkProcessor<'a> { } } - pub fn load_buffers(&mut self, image_filename: String) - { - let project_root = - std::env::current_dir() - .expect("failed to get root directory"); - - let mut compute_path = project_root.clone(); - compute_path.push(PathBuf::from("resources/images/")); - compute_path.push(PathBuf::from(image_filename)); - - let img = image::open(compute_path).expect("Couldn't find image"); - - self.xy = img.dimensions(); - - let data_length = self.xy.0 * self.xy.1 * 4; - let pixel_count = img.raw_pixels().len(); - println!("Pixel count {}", pixel_count); - - if pixel_count != data_length as usize { - println!("Creating apha channel..."); - for i in img.raw_pixels().iter() { - if (self.image_buffer.len() + 1) % 4 == 0 { - self.image_buffer.push(255); - } - self.image_buffer.push(*i); - } - self.image_buffer.push(255); - } else { - self.image_buffer = img.raw_pixels(); - } - - println!("Buffer length {}", self.image_buffer.len()); - println!("Size {:?}", self.xy); - - println!("Allocating Buffers..."); - - // Pull out the image data and place it in a buffer for the kernel to write to and for us to read from - let write_buffer = { - let mut buff = self.image_buffer.iter(); - let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); - CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap() - }; - - - // Pull out the image data and place it in a buffer for the kernel to read from - let read_buffer = { - let mut buff = self.image_buffer.iter(); - let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); - CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap() - }; - - - // A buffer to hold many i32 values to use as settings - let settings_buffer = { - let vec = vec![self.xy.0, self.xy.1]; - let mut buff = vec.iter(); - let data_iter = - (0..2).map(|n| *(buff.next().unwrap())); - CpuAccessibleBuffer::from_iter(self.device.clone(), - BufferUsage::all(), - data_iter).unwrap() - }; - - println!("Done"); - - // Create the data descriptor set for our previously created shader pipeline - let mut set = - PersistentDescriptorSet::start(self.compute_pipeline.clone().unwrap().clone(), 0) - .add_buffer(write_buffer.clone()).unwrap() - .add_buffer(read_buffer.clone()).unwrap() - .add_buffer(settings_buffer.clone()).unwrap(); - - self.compute_set = Some(Arc::new(set.build().unwrap())); - - self.img_buffers.push(write_buffer); - self.img_buffers.push(read_buffer); - self.settings_buffer = Some(settings_buffer); - - - // We now create a buffer that will store the shape of our triangle. - let vertex_buffer = { - vulkano::impl_vertex!(tVertex, position); - - CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [ - tVertex { position: [-1.0, -1.0 ] }, - tVertex { position: [-1.0, 1.0 ] }, - tVertex { position: [ 1.0, 1.0 ] }, - tVertex { position: [ 1.0, -1.0 ] }, - ].iter().cloned()).unwrap() - }; - - self.vertex_buffer = Some(vertex_buffer); - } - // pub fn read_image(&self) -> Vec { // // // The buffer is sync'd so we can just read straight from the handle @@ -683,3 +707,4 @@ impl<'a> VkProcessor<'a> { +