some fiddling with documentation. Added Poly type

master
mitchellhansen 5 years ago
parent 99ed07e070
commit 9ddc88400e

@ -16,6 +16,21 @@ Main Systems:
[[VKProcessor:DynamicVertex|DynamicVertex]] ===========
[[VKProcessor:CompuState|CompuState]] [[~/source/Trac3r-rust/doc/sfml_rust/compute/compu_state/struct.CompuState.html|===========]]
--------------------
=== Trac3r : A program to convert images to 2D toolpaths ===
TODO:
+ Text rendering is half implemented.
+ Need generalized interface for render (image, texture, text)
+ Currently using local copies of a few libraries:
shade_runner
vulkano/vulkano-win
vulkano/vulkano-shaders
vulkano/vulkano
--------------------
====== Warming Up ======

@ -1,525 +0,0 @@
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc};
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, RenderPassAbstract, Subpass};
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline};
use vulkano::pipeline::viewport::Viewport;
use vulkano::sync::{FlushError, GpuFuture};
use vulkano::sync;
use vulkano::image::SwapchainImage;
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
use vulkano::swapchain;
use std::time::SystemTime;
use std::sync::Arc;
use std::ffi::CStr;
use std::path::PathBuf;
use shade_runner as sr;
use image::{DynamicImage, GenericImage, GenericImageView, ImageBuffer};
use vulkano::descriptor::pipeline_layout::PipelineLayout;
use shade_runner::{ComputeLayout, CompileError};
use vulkano::descriptor::descriptor_set::PersistentDescriptorSetBuf;
use shaderc::CompileOptions;
use winit::{Event, EventsLoop, Window, WindowBuilder, WindowEvent};
use vulkano_win::VkSurfaceBuild;
use vulkano::SafeDeref;
fn main() {
let instance = {
let extensions = vulkano_win::required_extensions();
Instance::new(None, &extensions, None).unwrap()
};
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
// The objective of this example is to draw a triangle on a window. To do so, we first need to
// create the window.
//
// This is done by creating a `WindowBuilder` from the `winit` crate, then calling the
// `build_vk_surface` method provided by the `VkSurfaceBuild` trait from `vulkano_win`. If you
// ever get an error about `build_vk_surface` being undefined in one of your projects, this
// probably means that you forgot to import this trait.
//
// This returns a `vulkano::swapchain::Surface` object that contains both a cross-platform winit
// window and a cross-platform Vulkan surface that represents the surface of the window.
let mut events_loop = EventsLoop::new();
let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap();
let window = surface.window();
let queue_family = physical.queue_families().find(|&q| {
// We take the first queue that supports drawing to our window.
q.supports_graphics() &&
surface.is_supported(q).unwrap_or(false) &&
q.supports_compute()
}).unwrap();
let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() };
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
// Before we can draw on the surface, we have to create what is called a swapchain. Creating
// a swapchain allocates the color buffers that will contain the image that will ultimately
// be visible on the screen. These images are returned alongside with the swapchain.
let (mut swapchain, images) = {
// Querying the capabilities of the surface. When we create the swapchain we can only
// pass values that are allowed by the capabilities.
let capabilities = surface.capabilities(physical).unwrap();
let usage = capabilities.supported_usage_flags;
// The alpha mode indicates how the alpha value of the final image will behave. For example
// you can choose whether the window will be opaque or transparent.
let alpha = capabilities.supported_composite_alpha.iter().next().unwrap();
// Choosing the internal format that the images will have.
let format = capabilities.supported_formats[0].0;
// The dimensions of the window, only used to initially setup the swapchain.
// NOTE:
// On some drivers the swapchain dimensions are specified by `caps.current_extent` and the
// swapchain size must use these dimensions.
// These dimensions are always the same as the window dimensions
//
// However other drivers dont specify a value i.e. `caps.current_extent` is `None`
// These drivers will allow anything but the only sensible value is the window dimensions.
//
// Because for both of these cases, the swapchain needs to be the window dimensions, we just use that.
let initial_dimensions = if let Some(dimensions) = window.get_inner_size() {
// convert to physical pixels
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
// The window no longer exists so exit the application.
return;
};
// Please take a look at the docs for the meaning of the parameters we didn't mention.
Swapchain::new(device.clone(), surface.clone(), capabilities.min_image_count, format,
initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
PresentMode::Fifo, true, None).unwrap()
};
// We now create a buffer that will store the shape of our triangle.
let vertex_buffer = {
#[derive(Default, Debug, Clone)]
struct Vertex { position: [f32; 2] }
vulkano::impl_vertex!(Vertex, position);
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), [
Vertex { position: [-0.5, -0.25] },
Vertex { position: [0.0, 0.5] },
Vertex { position: [0.25, -0.1] }
].iter().cloned()).unwrap()
};
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: "
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}"
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: "
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
"
}
}
let vs = vs::Shader::load(device.clone()).unwrap();
let fs = fs::Shader::load(device.clone()).unwrap();
// The next step is to create a *render pass*, which is an object that describes where the
// output of the graphics pipeline will go. It describes the layout of the images
// where the colors, depth and/or stencil information will be written.
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `load: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load: Clear,
// `store: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store: Store,
// `format: <ty>` indicates the type of the format of the image. This has to
// be one of the types of the `vulkano::format` module (or alternatively one
// of your structs that implements the `FormatDesc` trait). Here we use the
// same format as the swapchain.
format: swapchain.format(),
// TODO:
samples: 1,
}
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {}
}
).unwrap());
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
let pipeline = Arc::new(GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
.vertex_input_single_buffer()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(vs.main_entry_point(), ())
// The content of the vertex buffer describes a list of triangles.
.triangle_list()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(fs.main_entry_point(), ())
.depth_stencil_simple_depth()
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(device.clone())
.unwrap());
// Dynamic viewports allow us to recreate just the viewport when the window is resized
// Otherwise we would have to recreate the whole pipeline.
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
// The render pass we created above only describes the layout of our framebuffers. Before we
// can draw we also need to create the actual framebuffers.
//
// Since we need to draw to multiple images, we are going to create a different framebuffer for
// each image.
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
// Initialization is finally finished!
// In some situations, the swapchain will become invalid by itself. This includes for example
// when the window is resized (as the images of the swapchain will no longer match the
// window's) or, on Android, when the application went to the background and goes back to the
// foreground.
//
// In this situation, acquiring a swapchain image or presenting it will return an error.
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
// To continue rendering, we need to recreate the swapchain by creating a new swapchain.
// Here, we remember that we need to do this for the next loop iteration.
let mut recreate_swapchain = false;
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
//
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Box::new(sync::now(device.clone())) as Box<dyn GpuFuture>;
loop {
// It is important to call this function from time to time, otherwise resources will keep
// accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU has
// already processed, and frees the resources that are no longer needed.
previous_frame_end.cleanup_finished();
// Whenever the window resizes we need to recreate everything dependent on the window size.
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
if recreate_swapchain {
// Get the new dimensions of the window.
let dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
Err(err) => panic!("{:?}", err)
};
swapchain = new_swapchain;
// Because framebuffers contains an Arc on the old swapchain, we need to
// recreate framebuffers as well.
framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state);
recreate_swapchain = false;
}
// Before we can draw on the output, we have to *acquire* an image from the swapchain. If
// no image is available (which happens if you submit draw commands too quickly), then the
// function will block.
// This operation returns the index of the image that we are allowed to draw upon.
//
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_num, acquire_future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
continue;
}
Err(err) => panic!("{:?}", err)
};
// Specify the color to clear the framebuffer with i.e. blue
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
{
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/shaders/"));
compute_path.push(PathBuf::from("simple-edge.compute"));
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
options.add_macro_definition("SETTING_POS_X", Some("0"));
options.add_macro_definition("SETTING_POS_Y", Some("1"));
options.add_macro_definition("SETTING_BUCKETS_START", Some("2"));
options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2"));
let shader =
shade_runner::load_compute_with_options(compute_path, options)
.expect("Failed to compile");
let vulkano_entry =
shade_runner::parse_compute(&shader)
.expect("failed to parse");
let x = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.compute)
}.unwrap();
let c_pipeline = Arc::new({
unsafe {
ComputePipeline::new(device.clone(), &x.compute_entry_point(
CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.compute_layout), &(),
).unwrap()
}
});
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from("funky-bird.jpg"));
let img = image::open(compute_path).expect("Couldn't find image");
let xy = img.dimensions();
let data_length = xy.0 * xy.1 * 4;
let pixel_count = img.raw_pixels().len();
println!("Pixel count {}", pixel_count);
let mut image_buffer = Vec::new();
if pixel_count != data_length as usize {
println!("Creating apha channel...");
for i in img.raw_pixels().iter() {
if (image_buffer.len() + 1) % 4 == 0 {
image_buffer.push(255);
}
image_buffer.push(*i);
}
image_buffer.push(255);
} else {
image_buffer = img.raw_pixels();
}
println!("Buffer length {}", image_buffer.len());
println!("Size {:?}", xy);
println!("Allocating Buffers...");
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
let write_buffer = {
let mut buff = image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// Pull out the image data and place it in a buffer for the kernel to read from
let read_buffer = {
let mut buff = image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// A buffer to hold many i32 values to use as settings
let settings_buffer = {
let vec = vec![xy.0, xy.1];
let mut buff = vec.iter();
let data_iter =
(0..2).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(),
BufferUsage::all(),
data_iter).unwrap()
};
println!("Done");
// Create the data descriptor set for our previously created shader pipeline
let mut set =
PersistentDescriptorSet::start(c_pipeline.clone(), 0)
.add_buffer(write_buffer.clone()).unwrap()
.add_buffer(read_buffer.clone()).unwrap()
.add_buffer(settings_buffer.clone()).unwrap();
let mut set = Arc::new(set.build().unwrap());
// In order to draw, we have to build a *command buffer*. The command buffer object holds
// the list of commands that are going to be executed.
//
// Building a command buffer is an expensive operation (usually a few hundred
// microseconds), but it is known to be a hot path in the driver and is expected to be
// optimized.
//
// Note that we have to pass a queue family when we create the command buffer. The command
// buffer will only be executable on that given queue family.
let command_buffer =
AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family())
.unwrap()
.dispatch([xy.0, xy.1, 1],
c_pipeline.clone(),
set.clone(), ()).unwrap()
// Before we can draw, we have to *enter a render pass*. There are two methods to do
// this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is
// not covered here.
//
// The third parameter builds the list of values to clear the attachments with. The API
// is similar to the list of attachments when building the framebuffers, except that
// only the attachments that use `load: Clear` appear in the list.
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
.unwrap()
// We are now inside the first subpass of the render pass. We add a draw command.
//
// The last two parameters contain the list of resources to pass to the shaders.
// Since we used an `EmptyPipeline` object, the objects have to be `()`.
.draw(pipeline.clone(), &dynamic_state, vertex_buffer.clone(), (), ())
.unwrap()
// We leave the render pass by calling `draw_end`. Note that if we had multiple
// subpasses we could have called `next_inline` (or `next_secondary`) to jump to the
// next subpass.
.end_render_pass()
.unwrap()
// Finish building the command buffer by calling `build`.
.build().unwrap();
let future = previous_frame_end.join(acquire_future)
.then_execute(queue.clone(), command_buffer).unwrap()
// The color output is now expected to contain our triangle. But in order to show it on
// the screen, we have to *present* the image by calling `present`.
//
// This function does not actually present the image immediately. Instead it submits a
// present command at the end of the queue. This means that it will only be presented once
// the GPU has finished executing the command buffer that draws the triangle.
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Box::new(future) as Box<_>;
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
Err(e) => {
println!("{:?}", e);
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
}
}
// Note that in more complex programs it is likely that one of `acquire_next_image`,
// `command_buffer::submit`, or `present` will block for some time. This happens when the
// GPU's queue is full and the driver has to wait until the GPU finished some work.
//
// Unfortunately the Vulkan API doesn't provide any way to not wait or to detect when a
// wait would happen. Blocking may be the desired behavior, but if you don't want to
// block you should spawn a separate thread dedicated to submissions.
// Handling the window events in order to close the program when the user wants to close
// it.
let mut done = false;
events_loop.poll_events(|ev| {
match ev {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
_ => ()
}
});
if done { return; }
}
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
dynamic_state: &mut DynamicState,
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
let viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
depth_range: 0.0..1.0,
};
dynamic_state.viewports = Some(vec!(viewport));
images.iter().map(|image| {
Arc::new(
Framebuffer::start(render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}

@ -1,292 +0,0 @@
Skip to content
Search or jump to
Pull requests
Issues
Marketplace
Explore
@MitchellHansen
69
1,789 192 vulkano-rs/vulkano
Code Issues 171 Pull requests 15 Security Insights
vulkano/examples/src/bin/image/main.rs
@rukai rukai Fix warnings on nightly (#1213)
fc6ac6f 15 days ago
279 lines (232 sloc) 9.86 KB
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
use vulkano::device::{Device, DeviceExtensions};
use vulkano::format::Format;
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, Subpass, RenderPassAbstract};
use vulkano::image::{SwapchainImage, ImmutableImage, Dimensions};
use vulkano::instance::{Instance, PhysicalDevice};
use vulkano::pipeline::GraphicsPipeline;
use vulkano::pipeline::viewport::Viewport;
use vulkano::sampler::{Sampler, SamplerAddressMode, Filter, MipmapMode};
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
use vulkano::swapchain;
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use vulkano_win::VkSurfaceBuild;
use winit::{EventsLoop, Window, WindowBuilder, Event, WindowEvent};
use image::ImageFormat;
use std::sync::Arc;
fn main() {
// The start of this example is exactly the same as `triangle`. You should read the
// `triangle` example if you haven't done so yet.
let extensions = vulkano_win::required_extensions();
let instance = Instance::new(None, &extensions, None).unwrap();
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
println!("Using device: {} (type: {:?})", physical.name(), physical.ty());
let mut events_loop = EventsLoop::new();
let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap();
let window = surface.window();
let queue_family = physical.queue_families().find(|&q|
q.supports_graphics() && surface.is_supported(q).unwrap_or(false)
).unwrap();
let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() };
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let caps = surface.capabilities(physical).unwrap();
let usage = caps.supported_usage_flags;
let alpha = caps.supported_composite_alpha.iter().next().unwrap();
let format = caps.supported_formats[0].0;
let initial_dimensions = if let Some(dimensions) = window.get_inner_size() {
// convert to physical pixels
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
// The window no longer exists so exit the application.
return;
};
Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format,
initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
PresentMode::Fifo, true, None).unwrap()
};
#[derive(Default, Debug, Clone)]
struct Vertex { position: [f32; 2] }
vulkano::impl_vertex!(Vertex, position);
let vertex_buffer = CpuAccessibleBuffer::<[Vertex]>::from_iter(
device.clone(),
BufferUsage::all(),
[
Vertex { position: [-0.5, -0.5 ] },
Vertex { position: [-0.5, 0.5 ] },
Vertex { position: [ 0.5, -0.5 ] },
Vertex { position: [ 0.5, 0.5 ] },
].iter().cloned()
).unwrap();
let vs = vs::Shader::load(device.clone()).unwrap();
let fs = fs::Shader::load(device.clone()).unwrap();
let render_pass = Arc::new(
vulkano::single_pass_renderpass!(device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.format(),
samples: 1,
}
},
pass: {
color: [color],
depth_stencil: {}
}
).unwrap()
);
let (texture, tex_future) = {
let image = image::load_from_memory_with_format(include_bytes!("image_img.png"),
ImageFormat::PNG).unwrap().to_rgba();
let image_data = image.into_raw().clone();
ImmutableImage::from_iter(
image_data.iter().cloned(),
Dimensions::Dim2d { width: 93, height: 93 },
Format::R8G8B8A8Srgb,
queue.clone()
).unwrap()
};
let sampler = Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
let pipeline = Arc::new(GraphicsPipeline::start()
.vertex_input_single_buffer::<Vertex>()
.vertex_shader(vs.main_entry_point(), ())
.triangle_strip()
.viewports_dynamic_scissors_irrelevant(1)
.fragment_shader(fs.main_entry_point(), ())
.blend_alpha_blending()
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
.build(device.clone())
.unwrap());
let set = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0)
.add_sampled_image(texture.clone(), sampler.clone()).unwrap()
.build().unwrap()
);
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
let mut recreate_swapchain = false;
let mut previous_frame_end = Box::new(tex_future) as Box<dyn GpuFuture>;
loop {
previous_frame_end.cleanup_finished();
if recreate_swapchain {
let dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) {
Ok(r) => r,
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
Err(err) => panic!("{:?}", err)
};
swapchain = new_swapchain;
framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state);
recreate_swapchain = false;
}
let (image_num, future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
continue;
}
Err(err) => panic!("{:?}", err)
};
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
let cb = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family())
.unwrap()
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values).unwrap()
.draw(pipeline.clone(), &dynamic_state, vertex_buffer.clone(), set.clone(), ()).unwrap()
.end_render_pass().unwrap()
.build().unwrap();
let future = previous_frame_end.join(future)
.then_execute(queue.clone(), cb).unwrap()
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Box::new(future) as Box<_>;
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
Err(e) => {
println!("{:?}", e);
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
}
let mut done = false;
events_loop.poll_events(|ev| {
match ev {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
_ => ()
}
});
if done { return; }
}
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
dynamic_state: &mut DynamicState
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
let viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
depth_range: 0.0 .. 1.0,
};
dynamic_state.viewports = Some(vec!(viewport));
images.iter().map(|image| {
Arc::new(
Framebuffer::start(render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
mod vs {
vulkano_shaders::shader!{
ty: "vertex",
src: "
#version 450
layout(location = 0) in vec2 position;
layout(location = 0) out vec2 tex_coords;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
tex_coords = position + vec2(0.5);
}"
}
}
mod fs {
vulkano_shaders::shader!{
ty: "fragment",
src: "
#version 450
layout(location = 0) in vec2 tex_coords;
layout(location = 0) out vec4 f_color;
layout(set = 0, binding = 0) uniform sampler2D tex;
void main() {
f_color = texture(tex, tex_coords);
}"
}
}

@ -200,7 +200,7 @@ impl CanvasState {
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from(image_filename));
compute_path.push(PathBuf::from(image_filename.clone()));
let img = image::open(compute_path).expect("Couldn't find image");
@ -212,7 +212,7 @@ impl CanvasState {
let mut image_buffer = Vec::new();
if pixel_count != data_length as usize {
println!("Creating apha channel...");
println!("Creating alpha channel for {}", image_filename.clone());
for i in img.raw_pixels().iter() {
if (image_buffer.len() + 1) % 4 == 0 {
image_buffer.push(255);
@ -236,7 +236,6 @@ impl CanvasState {
/// Load a texture using it's filename from a file. Returns the handle of the loaded texture
pub fn load_texture(&mut self, filename: String) -> Option<Arc<CanvasTextureHandle>> {
let texture_buffer = self.get_texture_from_file(filename.clone());
let handle = Arc::new(CanvasTextureHandle {
handle: self.texture_buffers.len() as u32

@ -105,13 +105,13 @@ impl CompuState {
let buffer = self.compute_buffers.get(buffer_id).unwrap();
let kernel = self.kernels.get(kernel_id).unwrap();
let p = kernel.clone().get_pipeline();
let d = buffer.get_descriptor_set(kernel.clone().get_pipeline());
let pipeline = kernel.clone().get_pipeline();
let descriptorset = buffer.get_descriptor_set(kernel.clone().get_pipeline());
let size = buffer.get_size();
command_buffer = command_buffer
.dispatch([size.0 / 8, size.1 / 8, 1], p, d, ()).unwrap()
.dispatch([size.0 / 8, size.1 / 8, 1], pipeline, descriptorset, ()).unwrap()
}
// i = (Buffer, Image, Kernel)

@ -0,0 +1,3 @@
pub mod polygon;
pub mod sprite;
pub mod rect;

@ -0,0 +1,71 @@
use std::sync::Arc;
use crate::canvas::*;
use crate::canvas::managed::handles::{CanvasFontHandle, CanvasImageHandle, CanvasTextureHandle, Handle};
use crate::canvas::canvas_frame::{Drawable};
use crate::util::vertex::{VertexTypes, TextureVertex3D, Vertex3D, ColorVertex3D};
use crate::drawables::sprite::Sprite;
/// Convex multi verticy polygon
#[derive(Debug, Clone)]
pub struct Polygon {
pub verts: VertexTypes,
position: (f32, f32),
size: (f32, f32),
}
/// Container class which implements drawable.
impl Polygon {
///
pub fn new(position: (f32, f32),
size: (f32, f32),
depth: u32,) -> Polygon {
let normalized_depth = (depth as f32 / 255.0);
let verts = vec![
ColorVertex3D{v_position: [-0.5, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-0.25, 0.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-0.25, 0.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [0.0, 0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [0.25, 0.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [0.0, 0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [0.5, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [0.25, 0.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [0.25, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [0.5, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [0.25, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [0.0, -0.1, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-0.25, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [0.0, -0.1, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-0.5, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
ColorVertex3D{v_position: [-0.25, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
];
Polygon {
verts: VertexTypes::ColorType(verts),
position: position,
size: size,
}
}
}
impl Drawable for Polygon {
fn get(&self) -> VertexTypes {
self.verts.clone()
}
}

@ -0,0 +1,57 @@
use crate::canvas::canvas_frame::Drawable;
use crate::util::vertex::{VertexTypes, ColorVertex3D};
///
#[derive(Debug, Clone)]
pub struct Rect {
pub verts: VertexTypes,
position: (f32, f32),
size: (f32, f32),
}
/// Container class which implements drawable.
impl Rect {
///
pub fn new(position: (f32, f32),
size: (f32, f32),
depth: u32) -> Rect {
let normalized_depth = (depth as f32 / 255.0);
let verts = vec![
ColorVertex3D{
v_position: [position.0, position.1, normalized_depth], // top left
color: [0.0, 1.0, 1.0, 0.5] },
ColorVertex3D{
v_position: [position.0, position.1 + size.1, normalized_depth], // bottom left
color: [1.0, 1.0, 1.0, 1.0] },
ColorVertex3D{
v_position: [position.0 + size.0, position.1 + size.1, normalized_depth], // bottom right
color: [1.0, 1.0, 1.0, 1.0] },
ColorVertex3D{
v_position: [position.0, position.1, normalized_depth], // top left
color: [1.0, 1.0, 1.0, 1.0] },
ColorVertex3D{
v_position: [position.0 + size.0, position.1 + size.1, normalized_depth], // bottom right
color: [1.0, 1.0, 1.0, 1.0] },
ColorVertex3D{
v_position: [position.0 + size.0, position.1, normalized_depth], // top right
color: [1.0, 1.0, 1.0, 1.0] },
];
Rect {
verts: VertexTypes::ColorType(verts),
position: position,
size: size,
}
}
}
impl Drawable for Rect {
fn get(&self) -> VertexTypes {
self.verts.clone()
}
}

@ -18,7 +18,6 @@ use vulkano::sync::GpuFuture;
use winit::{EventsLoop, WindowBuilder, WindowEvent, Event, DeviceEvent, VirtualKeyCode, ElementState};
use winit::dpi::LogicalSize;
use vulkano_win::VkSurfaceBuild;
use sprite::Sprite;
use crate::util::load_raw;
@ -30,34 +29,15 @@ use std::sync::Arc;
use crate::canvas::managed::handles::{CanvasTextureHandle, Handle, CanvasFontHandle};
use crate::util::vertex::{VertexTypes, TextureVertex3D};
use crate::compute::managed::handles::{CompuBufferHandle, CompuKernelHandle};
use crate::drawables::sprite::Sprite;
use crate::drawables::rect::Rect;
pub mod util;
pub mod vkprocessor;
pub mod sprite;
pub mod drawables;
pub mod canvas;
pub mod compute;
/*
Trac3r : A program to convert images to 2D toolpaths
TODO:
+ Text rendering is half implemented.
+ Need generalized interface for render (image, texture, text)
+ Currently using local copies of a few libraries:
shade_runner
vulkano/vulkano-win
vulkano/vulkano-shaders
vulkano/vulkano
+ Need to generate runtime vertex definitions if I want to have on the fly shaders
*/
pub fn main() {
hprof::start_frame();
@ -125,8 +105,12 @@ pub fn main() {
let font_handle : Arc<CanvasFontHandle> =
processor.get_font_handle(String::from("sansation.ttf")).unwrap();
let funky_sprite = Sprite::new((0.0, -0.5), (0.5, 0.5), 0, funky_handle.clone());
let funky_sprite = Sprite::new((0.0, 0.5), (0.5, 0.5), 0, funky_handle.clone());
let sfml_sprite = Sprite::new((0.0, -0.5), (0.5, 0.5), 1, sfml_handle.clone());
let rect = Rect::new((-0.5, -0.5), (0.5, 0.5), 1);
//let sfml_sprite = Sprite::new((0.0, -0.5), (0.5, 0.5), 1, sfml_handle.clone());
//let text_sprite = Text::new((-0.1,-0.1), (10.0, 10.0), font_handle.clone());
//let test_polygon = Poly::new_with_color((-0.5, -0.5), (0.5, 0.5), 1, (1.0,0.0,0.0,0.0));
@ -187,20 +171,15 @@ pub fn main() {
break;
}
let funky_sprite = Sprite::new((0.0, -0.5), (0.5, 0.5), 0, funky_handle.clone());
let mut canvas_frame = CanvasFrame::default();
canvas_frame.draw(&funky_sprite);
canvas_frame.draw(&sfml_sprite);
// canvas_frame.draw(&funky_sprite);
// canvas_frame.draw(&sfml_sprite);
// canvas_frame.draw(&rect);
let mut compu_frame = CompuFrame::new();
// compu_frame.add(compute_buffer.clone(), compute_kernel.clone());
compu_frame.add(compute_buffer.clone(), compute_kernel.clone());
// compu_frame.add_with_image_swap(compute_buffer.clone(), compute_kernel.clone(), &compu_sprite1);
//
// let mut canvas = CanvasFrame::new();
// canvas.draw(&funky_sprite);
// canvas.draw(&test_polygon);
{
let g = hprof::enter("Run");
@ -213,7 +192,6 @@ pub fn main() {
drop(l);
return;
hprof::end_frame();
hprof::profiler().print_timing();
}

@ -26,7 +26,7 @@ pub fn load_raw(filename: String) -> (Vec<u8>, (u32,u32)) {
let mut image_buffer = Vec::new();
if pixel_count != data_length as usize {
println!("Creating apha channel...");
println!("Creating alpha channel for {}", filename);
for i in img.raw_pixels().iter() {
if (image_buffer.len() + 1) % 4 == 0 {
image_buffer.push(255);

@ -222,10 +222,9 @@ impl<'a> VkProcessor<'a> {
self.compute_state.write_compute_buffer(handle, data)
}
///
/// Run the VKprocessor for a single frame, consuming the Canvas/Compu Frames
pub fn run(&mut self,
surface: &'a Arc<Surface<Window>>,
//canvas_frame: CanvasFrame,
canvas_frame: CanvasFrame,
compute_frame: CompuFrame,
) {

Loading…
Cancel
Save