parent
99ed07e070
commit
9ddc88400e
@ -1,525 +0,0 @@
|
||||
|
||||
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
|
||||
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
|
||||
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc};
|
||||
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
|
||||
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, RenderPassAbstract, Subpass};
|
||||
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
|
||||
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline};
|
||||
use vulkano::pipeline::viewport::Viewport;
|
||||
use vulkano::sync::{FlushError, GpuFuture};
|
||||
use vulkano::sync;
|
||||
use vulkano::image::SwapchainImage;
|
||||
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
|
||||
use vulkano::swapchain;
|
||||
use std::time::SystemTime;
|
||||
use std::sync::Arc;
|
||||
use std::ffi::CStr;
|
||||
use std::path::PathBuf;
|
||||
use shade_runner as sr;
|
||||
use image::{DynamicImage, GenericImage, GenericImageView, ImageBuffer};
|
||||
use vulkano::descriptor::pipeline_layout::PipelineLayout;
|
||||
use shade_runner::{ComputeLayout, CompileError};
|
||||
use vulkano::descriptor::descriptor_set::PersistentDescriptorSetBuf;
|
||||
use shaderc::CompileOptions;
|
||||
use winit::{Event, EventsLoop, Window, WindowBuilder, WindowEvent};
|
||||
use vulkano_win::VkSurfaceBuild;
|
||||
use vulkano::SafeDeref;
|
||||
|
||||
|
||||
|
||||
fn main() {
|
||||
let instance = {
|
||||
let extensions = vulkano_win::required_extensions();
|
||||
Instance::new(None, &extensions, None).unwrap()
|
||||
};
|
||||
|
||||
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
|
||||
|
||||
// The objective of this example is to draw a triangle on a window. To do so, we first need to
|
||||
// create the window.
|
||||
//
|
||||
// This is done by creating a `WindowBuilder` from the `winit` crate, then calling the
|
||||
// `build_vk_surface` method provided by the `VkSurfaceBuild` trait from `vulkano_win`. If you
|
||||
// ever get an error about `build_vk_surface` being undefined in one of your projects, this
|
||||
// probably means that you forgot to import this trait.
|
||||
//
|
||||
// This returns a `vulkano::swapchain::Surface` object that contains both a cross-platform winit
|
||||
// window and a cross-platform Vulkan surface that represents the surface of the window.
|
||||
let mut events_loop = EventsLoop::new();
|
||||
|
||||
let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap();
|
||||
let window = surface.window();
|
||||
|
||||
let queue_family = physical.queue_families().find(|&q| {
|
||||
// We take the first queue that supports drawing to our window.
|
||||
q.supports_graphics() &&
|
||||
surface.is_supported(q).unwrap_or(false) &&
|
||||
q.supports_compute()
|
||||
}).unwrap();
|
||||
|
||||
let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() };
|
||||
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
|
||||
[(queue_family, 0.5)].iter().cloned()).unwrap();
|
||||
|
||||
let queue = queues.next().unwrap();
|
||||
|
||||
// Before we can draw on the surface, we have to create what is called a swapchain. Creating
|
||||
// a swapchain allocates the color buffers that will contain the image that will ultimately
|
||||
// be visible on the screen. These images are returned alongside with the swapchain.
|
||||
let (mut swapchain, images) = {
|
||||
// Querying the capabilities of the surface. When we create the swapchain we can only
|
||||
// pass values that are allowed by the capabilities.
|
||||
let capabilities = surface.capabilities(physical).unwrap();
|
||||
|
||||
let usage = capabilities.supported_usage_flags;
|
||||
|
||||
// The alpha mode indicates how the alpha value of the final image will behave. For example
|
||||
// you can choose whether the window will be opaque or transparent.
|
||||
let alpha = capabilities.supported_composite_alpha.iter().next().unwrap();
|
||||
|
||||
// Choosing the internal format that the images will have.
|
||||
let format = capabilities.supported_formats[0].0;
|
||||
|
||||
// The dimensions of the window, only used to initially setup the swapchain.
|
||||
// NOTE:
|
||||
// On some drivers the swapchain dimensions are specified by `caps.current_extent` and the
|
||||
// swapchain size must use these dimensions.
|
||||
// These dimensions are always the same as the window dimensions
|
||||
//
|
||||
// However other drivers dont specify a value i.e. `caps.current_extent` is `None`
|
||||
// These drivers will allow anything but the only sensible value is the window dimensions.
|
||||
//
|
||||
// Because for both of these cases, the swapchain needs to be the window dimensions, we just use that.
|
||||
let initial_dimensions = if let Some(dimensions) = window.get_inner_size() {
|
||||
// convert to physical pixels
|
||||
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
|
||||
[dimensions.0, dimensions.1]
|
||||
} else {
|
||||
// The window no longer exists so exit the application.
|
||||
return;
|
||||
};
|
||||
|
||||
// Please take a look at the docs for the meaning of the parameters we didn't mention.
|
||||
Swapchain::new(device.clone(), surface.clone(), capabilities.min_image_count, format,
|
||||
initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
|
||||
PresentMode::Fifo, true, None).unwrap()
|
||||
};
|
||||
|
||||
|
||||
// We now create a buffer that will store the shape of our triangle.
|
||||
let vertex_buffer = {
|
||||
#[derive(Default, Debug, Clone)]
|
||||
struct Vertex { position: [f32; 2] }
|
||||
vulkano::impl_vertex!(Vertex, position);
|
||||
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), [
|
||||
Vertex { position: [-0.5, -0.25] },
|
||||
Vertex { position: [0.0, 0.5] },
|
||||
Vertex { position: [0.25, -0.1] }
|
||||
].iter().cloned()).unwrap()
|
||||
};
|
||||
|
||||
mod vs {
|
||||
vulkano_shaders::shader! {
|
||||
ty: "vertex",
|
||||
src: "
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec2 position;
|
||||
|
||||
void main() {
|
||||
gl_Position = vec4(position, 0.0, 1.0);
|
||||
}"
|
||||
}
|
||||
}
|
||||
|
||||
mod fs {
|
||||
vulkano_shaders::shader! {
|
||||
ty: "fragment",
|
||||
src: "
|
||||
#version 450
|
||||
|
||||
layout(location = 0) out vec4 f_color;
|
||||
|
||||
void main() {
|
||||
f_color = vec4(1.0, 0.0, 0.0, 1.0);
|
||||
}
|
||||
"
|
||||
}
|
||||
}
|
||||
|
||||
let vs = vs::Shader::load(device.clone()).unwrap();
|
||||
let fs = fs::Shader::load(device.clone()).unwrap();
|
||||
|
||||
// The next step is to create a *render pass*, which is an object that describes where the
|
||||
// output of the graphics pipeline will go. It describes the layout of the images
|
||||
// where the colors, depth and/or stencil information will be written.
|
||||
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
|
||||
device.clone(),
|
||||
attachments: {
|
||||
// `color` is a custom name we give to the first and only attachment.
|
||||
color: {
|
||||
// `load: Clear` means that we ask the GPU to clear the content of this
|
||||
// attachment at the start of the drawing.
|
||||
load: Clear,
|
||||
// `store: Store` means that we ask the GPU to store the output of the draw
|
||||
// in the actual image. We could also ask it to discard the result.
|
||||
store: Store,
|
||||
// `format: <ty>` indicates the type of the format of the image. This has to
|
||||
// be one of the types of the `vulkano::format` module (or alternatively one
|
||||
// of your structs that implements the `FormatDesc` trait). Here we use the
|
||||
// same format as the swapchain.
|
||||
format: swapchain.format(),
|
||||
// TODO:
|
||||
samples: 1,
|
||||
}
|
||||
},
|
||||
pass: {
|
||||
// We use the attachment named `color` as the one and only color attachment.
|
||||
color: [color],
|
||||
// No depth-stencil attachment is indicated with empty brackets.
|
||||
depth_stencil: {}
|
||||
}
|
||||
).unwrap());
|
||||
|
||||
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
|
||||
// program, but much more specific.
|
||||
let pipeline = Arc::new(GraphicsPipeline::start()
|
||||
// We need to indicate the layout of the vertices.
|
||||
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
|
||||
// to the type of each vertex. But in this code it is automatically inferred.
|
||||
.vertex_input_single_buffer()
|
||||
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
|
||||
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
|
||||
// the entry point.
|
||||
.vertex_shader(vs.main_entry_point(), ())
|
||||
// The content of the vertex buffer describes a list of triangles.
|
||||
.triangle_list()
|
||||
// Use a resizable viewport set to draw over the entire window
|
||||
.viewports_dynamic_scissors_irrelevant(1)
|
||||
// See `vertex_shader`.
|
||||
.fragment_shader(fs.main_entry_point(), ())
|
||||
|
||||
.depth_stencil_simple_depth()
|
||||
// We have to indicate which subpass of which render pass this pipeline is going to be used
|
||||
// in. The pipeline will only be usable from this particular subpass.
|
||||
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
|
||||
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
|
||||
.build(device.clone())
|
||||
.unwrap());
|
||||
|
||||
// Dynamic viewports allow us to recreate just the viewport when the window is resized
|
||||
// Otherwise we would have to recreate the whole pipeline.
|
||||
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
|
||||
|
||||
// The render pass we created above only describes the layout of our framebuffers. Before we
|
||||
// can draw we also need to create the actual framebuffers.
|
||||
//
|
||||
// Since we need to draw to multiple images, we are going to create a different framebuffer for
|
||||
// each image.
|
||||
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
|
||||
|
||||
// Initialization is finally finished!
|
||||
|
||||
// In some situations, the swapchain will become invalid by itself. This includes for example
|
||||
// when the window is resized (as the images of the swapchain will no longer match the
|
||||
// window's) or, on Android, when the application went to the background and goes back to the
|
||||
// foreground.
|
||||
//
|
||||
// In this situation, acquiring a swapchain image or presenting it will return an error.
|
||||
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
|
||||
// To continue rendering, we need to recreate the swapchain by creating a new swapchain.
|
||||
// Here, we remember that we need to do this for the next loop iteration.
|
||||
let mut recreate_swapchain = false;
|
||||
|
||||
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
|
||||
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
|
||||
// they are in use by the GPU.
|
||||
//
|
||||
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
|
||||
// that, we store the submission of the previous frame here.
|
||||
let mut previous_frame_end = Box::new(sync::now(device.clone())) as Box<dyn GpuFuture>;
|
||||
|
||||
loop {
|
||||
// It is important to call this function from time to time, otherwise resources will keep
|
||||
// accumulating and you will eventually reach an out of memory error.
|
||||
// Calling this function polls various fences in order to determine what the GPU has
|
||||
// already processed, and frees the resources that are no longer needed.
|
||||
previous_frame_end.cleanup_finished();
|
||||
|
||||
// Whenever the window resizes we need to recreate everything dependent on the window size.
|
||||
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
|
||||
if recreate_swapchain {
|
||||
// Get the new dimensions of the window.
|
||||
let dimensions = if let Some(dimensions) = window.get_inner_size() {
|
||||
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
|
||||
[dimensions.0, dimensions.1]
|
||||
} else {
|
||||
return;
|
||||
};
|
||||
|
||||
let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) {
|
||||
Ok(r) => r,
|
||||
// This error tends to happen when the user is manually resizing the window.
|
||||
// Simply restarting the loop is the easiest way to fix this issue.
|
||||
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
|
||||
Err(err) => panic!("{:?}", err)
|
||||
};
|
||||
|
||||
swapchain = new_swapchain;
|
||||
// Because framebuffers contains an Arc on the old swapchain, we need to
|
||||
// recreate framebuffers as well.
|
||||
framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state);
|
||||
|
||||
recreate_swapchain = false;
|
||||
}
|
||||
|
||||
// Before we can draw on the output, we have to *acquire* an image from the swapchain. If
|
||||
// no image is available (which happens if you submit draw commands too quickly), then the
|
||||
// function will block.
|
||||
// This operation returns the index of the image that we are allowed to draw upon.
|
||||
//
|
||||
// This function can block if no image is available. The parameter is an optional timeout
|
||||
// after which the function call will return an error.
|
||||
let (image_num, acquire_future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
|
||||
Ok(r) => r,
|
||||
Err(AcquireError::OutOfDate) => {
|
||||
recreate_swapchain = true;
|
||||
continue;
|
||||
}
|
||||
Err(err) => panic!("{:?}", err)
|
||||
};
|
||||
|
||||
// Specify the color to clear the framebuffer with i.e. blue
|
||||
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
|
||||
|
||||
|
||||
{
|
||||
let project_root =
|
||||
std::env::current_dir()
|
||||
.expect("failed to get root directory");
|
||||
|
||||
let mut compute_path = project_root.clone();
|
||||
compute_path.push(PathBuf::from("resources/shaders/"));
|
||||
compute_path.push(PathBuf::from("simple-edge.compute"));
|
||||
|
||||
|
||||
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
|
||||
options.add_macro_definition("SETTING_POS_X", Some("0"));
|
||||
options.add_macro_definition("SETTING_POS_Y", Some("1"));
|
||||
options.add_macro_definition("SETTING_BUCKETS_START", Some("2"));
|
||||
options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2"));
|
||||
|
||||
let shader =
|
||||
shade_runner::load_compute_with_options(compute_path, options)
|
||||
.expect("Failed to compile");
|
||||
|
||||
let vulkano_entry =
|
||||
shade_runner::parse_compute(&shader)
|
||||
.expect("failed to parse");
|
||||
|
||||
let x = unsafe {
|
||||
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.compute)
|
||||
}.unwrap();
|
||||
|
||||
let c_pipeline = Arc::new({
|
||||
unsafe {
|
||||
ComputePipeline::new(device.clone(), &x.compute_entry_point(
|
||||
CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
||||
vulkano_entry.compute_layout), &(),
|
||||
).unwrap()
|
||||
}
|
||||
});
|
||||
|
||||
let project_root =
|
||||
std::env::current_dir()
|
||||
.expect("failed to get root directory");
|
||||
|
||||
let mut compute_path = project_root.clone();
|
||||
compute_path.push(PathBuf::from("resources/images/"));
|
||||
compute_path.push(PathBuf::from("funky-bird.jpg"));
|
||||
|
||||
let img = image::open(compute_path).expect("Couldn't find image");
|
||||
|
||||
let xy = img.dimensions();
|
||||
|
||||
let data_length = xy.0 * xy.1 * 4;
|
||||
let pixel_count = img.raw_pixels().len();
|
||||
println!("Pixel count {}", pixel_count);
|
||||
|
||||
let mut image_buffer = Vec::new();
|
||||
if pixel_count != data_length as usize {
|
||||
println!("Creating apha channel...");
|
||||
for i in img.raw_pixels().iter() {
|
||||
if (image_buffer.len() + 1) % 4 == 0 {
|
||||
image_buffer.push(255);
|
||||
}
|
||||
image_buffer.push(*i);
|
||||
}
|
||||
image_buffer.push(255);
|
||||
} else {
|
||||
image_buffer = img.raw_pixels();
|
||||
}
|
||||
|
||||
println!("Buffer length {}", image_buffer.len());
|
||||
println!("Size {:?}", xy);
|
||||
|
||||
println!("Allocating Buffers...");
|
||||
|
||||
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
|
||||
let write_buffer = {
|
||||
let mut buff = image_buffer.iter();
|
||||
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
|
||||
};
|
||||
|
||||
|
||||
// Pull out the image data and place it in a buffer for the kernel to read from
|
||||
let read_buffer = {
|
||||
let mut buff = image_buffer.iter();
|
||||
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
|
||||
};
|
||||
|
||||
|
||||
// A buffer to hold many i32 values to use as settings
|
||||
let settings_buffer = {
|
||||
let vec = vec![xy.0, xy.1];
|
||||
let mut buff = vec.iter();
|
||||
let data_iter =
|
||||
(0..2).map(|n| *(buff.next().unwrap()));
|
||||
CpuAccessibleBuffer::from_iter(device.clone(),
|
||||
BufferUsage::all(),
|
||||
data_iter).unwrap()
|
||||
};
|
||||
|
||||
println!("Done");
|
||||
|
||||
// Create the data descriptor set for our previously created shader pipeline
|
||||
let mut set =
|
||||
PersistentDescriptorSet::start(c_pipeline.clone(), 0)
|
||||
.add_buffer(write_buffer.clone()).unwrap()
|
||||
.add_buffer(read_buffer.clone()).unwrap()
|
||||
.add_buffer(settings_buffer.clone()).unwrap();
|
||||
|
||||
let mut set = Arc::new(set.build().unwrap());
|
||||
|
||||
|
||||
|
||||
|
||||
// In order to draw, we have to build a *command buffer*. The command buffer object holds
|
||||
// the list of commands that are going to be executed.
|
||||
//
|
||||
// Building a command buffer is an expensive operation (usually a few hundred
|
||||
// microseconds), but it is known to be a hot path in the driver and is expected to be
|
||||
// optimized.
|
||||
//
|
||||
// Note that we have to pass a queue family when we create the command buffer. The command
|
||||
// buffer will only be executable on that given queue family.
|
||||
let command_buffer =
|
||||
AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family())
|
||||
.unwrap()
|
||||
|
||||
.dispatch([xy.0, xy.1, 1],
|
||||
c_pipeline.clone(),
|
||||
set.clone(), ()).unwrap()
|
||||
// Before we can draw, we have to *enter a render pass*. There are two methods to do
|
||||
// this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is
|
||||
// not covered here.
|
||||
//
|
||||
// The third parameter builds the list of values to clear the attachments with. The API
|
||||
// is similar to the list of attachments when building the framebuffers, except that
|
||||
// only the attachments that use `load: Clear` appear in the list.
|
||||
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
|
||||
.unwrap()
|
||||
|
||||
|
||||
// We are now inside the first subpass of the render pass. We add a draw command.
|
||||
//
|
||||
// The last two parameters contain the list of resources to pass to the shaders.
|
||||
// Since we used an `EmptyPipeline` object, the objects have to be `()`.
|
||||
.draw(pipeline.clone(), &dynamic_state, vertex_buffer.clone(), (), ())
|
||||
.unwrap()
|
||||
|
||||
// We leave the render pass by calling `draw_end`. Note that if we had multiple
|
||||
// subpasses we could have called `next_inline` (or `next_secondary`) to jump to the
|
||||
// next subpass.
|
||||
.end_render_pass()
|
||||
.unwrap()
|
||||
|
||||
// Finish building the command buffer by calling `build`.
|
||||
.build().unwrap();
|
||||
|
||||
let future = previous_frame_end.join(acquire_future)
|
||||
.then_execute(queue.clone(), command_buffer).unwrap()
|
||||
|
||||
// The color output is now expected to contain our triangle. But in order to show it on
|
||||
// the screen, we have to *present* the image by calling `present`.
|
||||
//
|
||||
// This function does not actually present the image immediately. Instead it submits a
|
||||
// present command at the end of the queue. This means that it will only be presented once
|
||||
// the GPU has finished executing the command buffer that draws the triangle.
|
||||
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
|
||||
.then_signal_fence_and_flush();
|
||||
|
||||
match future {
|
||||
Ok(future) => {
|
||||
previous_frame_end = Box::new(future) as Box<_>;
|
||||
}
|
||||
Err(FlushError::OutOfDate) => {
|
||||
recreate_swapchain = true;
|
||||
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
|
||||
}
|
||||
Err(e) => {
|
||||
println!("{:?}", e);
|
||||
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Note that in more complex programs it is likely that one of `acquire_next_image`,
|
||||
// `command_buffer::submit`, or `present` will block for some time. This happens when the
|
||||
// GPU's queue is full and the driver has to wait until the GPU finished some work.
|
||||
//
|
||||
// Unfortunately the Vulkan API doesn't provide any way to not wait or to detect when a
|
||||
// wait would happen. Blocking may be the desired behavior, but if you don't want to
|
||||
// block you should spawn a separate thread dedicated to submissions.
|
||||
|
||||
// Handling the window events in order to close the program when the user wants to close
|
||||
// it.
|
||||
let mut done = false;
|
||||
events_loop.poll_events(|ev| {
|
||||
match ev {
|
||||
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
|
||||
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
|
||||
_ => ()
|
||||
}
|
||||
});
|
||||
if done { return; }
|
||||
}
|
||||
}
|
||||
|
||||
/// This method is called once during initialization, then again whenever the window is resized
|
||||
fn window_size_dependent_setup(
|
||||
images: &[Arc<SwapchainImage<Window>>],
|
||||
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
|
||||
dynamic_state: &mut DynamicState,
|
||||
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
|
||||
let dimensions = images[0].dimensions();
|
||||
|
||||
let viewport = Viewport {
|
||||
origin: [0.0, 0.0],
|
||||
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
|
||||
depth_range: 0.0..1.0,
|
||||
};
|
||||
dynamic_state.viewports = Some(vec!(viewport));
|
||||
|
||||
images.iter().map(|image| {
|
||||
Arc::new(
|
||||
Framebuffer::start(render_pass.clone())
|
||||
.add(image.clone()).unwrap()
|
||||
.build().unwrap()
|
||||
) as Arc<dyn FramebufferAbstract + Send + Sync>
|
||||
}).collect::<Vec<_>>()
|
||||
}
|
||||
|
@ -1,292 +0,0 @@
|
||||
Skip to content
|
||||
|
||||
Search or jump to…
|
||||
|
||||
Pull requests
|
||||
Issues
|
||||
Marketplace
|
||||
Explore
|
||||
|
||||
@MitchellHansen
|
||||
69
|
||||
1,789 192 vulkano-rs/vulkano
|
||||
Code Issues 171 Pull requests 15 Security Insights
|
||||
vulkano/examples/src/bin/image/main.rs
|
||||
@rukai rukai Fix warnings on nightly (#1213)
|
||||
fc6ac6f 15 days ago
|
||||
279 lines (232 sloc) 9.86 KB
|
||||
|
||||
// Copyright (c) 2016 The vulkano developers
|
||||
// Licensed under the Apache License, Version 2.0
|
||||
// <LICENSE-APACHE or
|
||||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
|
||||
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
|
||||
// at your option. All files in the project carrying such
|
||||
// notice may not be copied, modified, or distributed except
|
||||
// according to those terms.
|
||||
|
||||
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer};
|
||||
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
|
||||
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
|
||||
use vulkano::device::{Device, DeviceExtensions};
|
||||
use vulkano::format::Format;
|
||||
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, Subpass, RenderPassAbstract};
|
||||
use vulkano::image::{SwapchainImage, ImmutableImage, Dimensions};
|
||||
use vulkano::instance::{Instance, PhysicalDevice};
|
||||
use vulkano::pipeline::GraphicsPipeline;
|
||||
use vulkano::pipeline::viewport::Viewport;
|
||||
use vulkano::sampler::{Sampler, SamplerAddressMode, Filter, MipmapMode};
|
||||
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
|
||||
use vulkano::swapchain;
|
||||
use vulkano::sync::{GpuFuture, FlushError};
|
||||
use vulkano::sync;
|
||||
|
||||
use vulkano_win::VkSurfaceBuild;
|
||||
|
||||
use winit::{EventsLoop, Window, WindowBuilder, Event, WindowEvent};
|
||||
|
||||
use image::ImageFormat;
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
fn main() {
|
||||
// The start of this example is exactly the same as `triangle`. You should read the
|
||||
// `triangle` example if you haven't done so yet.
|
||||
|
||||
let extensions = vulkano_win::required_extensions();
|
||||
let instance = Instance::new(None, &extensions, None).unwrap();
|
||||
|
||||
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
|
||||
println!("Using device: {} (type: {:?})", physical.name(), physical.ty());
|
||||
|
||||
let mut events_loop = EventsLoop::new();
|
||||
let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap();
|
||||
let window = surface.window();
|
||||
|
||||
let queue_family = physical.queue_families().find(|&q|
|
||||
q.supports_graphics() && surface.is_supported(q).unwrap_or(false)
|
||||
).unwrap();
|
||||
|
||||
let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() };
|
||||
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
|
||||
[(queue_family, 0.5)].iter().cloned()).unwrap();
|
||||
let queue = queues.next().unwrap();
|
||||
|
||||
let (mut swapchain, images) = {
|
||||
let caps = surface.capabilities(physical).unwrap();
|
||||
|
||||
let usage = caps.supported_usage_flags;
|
||||
let alpha = caps.supported_composite_alpha.iter().next().unwrap();
|
||||
let format = caps.supported_formats[0].0;
|
||||
|
||||
let initial_dimensions = if let Some(dimensions) = window.get_inner_size() {
|
||||
// convert to physical pixels
|
||||
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
|
||||
[dimensions.0, dimensions.1]
|
||||
} else {
|
||||
// The window no longer exists so exit the application.
|
||||
return;
|
||||
};
|
||||
|
||||
Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format,
|
||||
initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
|
||||
PresentMode::Fifo, true, None).unwrap()
|
||||
};
|
||||
|
||||
|
||||
#[derive(Default, Debug, Clone)]
|
||||
struct Vertex { position: [f32; 2] }
|
||||
vulkano::impl_vertex!(Vertex, position);
|
||||
|
||||
let vertex_buffer = CpuAccessibleBuffer::<[Vertex]>::from_iter(
|
||||
device.clone(),
|
||||
BufferUsage::all(),
|
||||
[
|
||||
Vertex { position: [-0.5, -0.5 ] },
|
||||
Vertex { position: [-0.5, 0.5 ] },
|
||||
Vertex { position: [ 0.5, -0.5 ] },
|
||||
Vertex { position: [ 0.5, 0.5 ] },
|
||||
].iter().cloned()
|
||||
).unwrap();
|
||||
|
||||
let vs = vs::Shader::load(device.clone()).unwrap();
|
||||
let fs = fs::Shader::load(device.clone()).unwrap();
|
||||
|
||||
let render_pass = Arc::new(
|
||||
vulkano::single_pass_renderpass!(device.clone(),
|
||||
attachments: {
|
||||
color: {
|
||||
load: Clear,
|
||||
store: Store,
|
||||
format: swapchain.format(),
|
||||
samples: 1,
|
||||
}
|
||||
},
|
||||
pass: {
|
||||
color: [color],
|
||||
depth_stencil: {}
|
||||
}
|
||||
).unwrap()
|
||||
);
|
||||
|
||||
let (texture, tex_future) = {
|
||||
let image = image::load_from_memory_with_format(include_bytes!("image_img.png"),
|
||||
ImageFormat::PNG).unwrap().to_rgba();
|
||||
let image_data = image.into_raw().clone();
|
||||
|
||||
ImmutableImage::from_iter(
|
||||
image_data.iter().cloned(),
|
||||
Dimensions::Dim2d { width: 93, height: 93 },
|
||||
Format::R8G8B8A8Srgb,
|
||||
queue.clone()
|
||||
).unwrap()
|
||||
};
|
||||
|
||||
let sampler = Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
|
||||
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
|
||||
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
|
||||
|
||||
let pipeline = Arc::new(GraphicsPipeline::start()
|
||||
.vertex_input_single_buffer::<Vertex>()
|
||||
.vertex_shader(vs.main_entry_point(), ())
|
||||
.triangle_strip()
|
||||
.viewports_dynamic_scissors_irrelevant(1)
|
||||
.fragment_shader(fs.main_entry_point(), ())
|
||||
.blend_alpha_blending()
|
||||
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
|
||||
.build(device.clone())
|
||||
.unwrap());
|
||||
|
||||
let set = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0)
|
||||
.add_sampled_image(texture.clone(), sampler.clone()).unwrap()
|
||||
.build().unwrap()
|
||||
);
|
||||
|
||||
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
|
||||
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
|
||||
|
||||
let mut recreate_swapchain = false;
|
||||
let mut previous_frame_end = Box::new(tex_future) as Box<dyn GpuFuture>;
|
||||
|
||||
loop {
|
||||
previous_frame_end.cleanup_finished();
|
||||
if recreate_swapchain {
|
||||
let dimensions = if let Some(dimensions) = window.get_inner_size() {
|
||||
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
|
||||
[dimensions.0, dimensions.1]
|
||||
} else {
|
||||
return;
|
||||
};
|
||||
|
||||
let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) {
|
||||
Ok(r) => r,
|
||||
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
|
||||
Err(err) => panic!("{:?}", err)
|
||||
};
|
||||
|
||||
swapchain = new_swapchain;
|
||||
framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state);
|
||||
|
||||
recreate_swapchain = false;
|
||||
}
|
||||
|
||||
let (image_num, future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
|
||||
Ok(r) => r,
|
||||
Err(AcquireError::OutOfDate) => {
|
||||
recreate_swapchain = true;
|
||||
continue;
|
||||
}
|
||||
Err(err) => panic!("{:?}", err)
|
||||
};
|
||||
|
||||
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
|
||||
|
||||
let cb = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family())
|
||||
.unwrap()
|
||||
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values).unwrap()
|
||||
.draw(pipeline.clone(), &dynamic_state, vertex_buffer.clone(), set.clone(), ()).unwrap()
|
||||
.end_render_pass().unwrap()
|
||||
.build().unwrap();
|
||||
|
||||
let future = previous_frame_end.join(future)
|
||||
.then_execute(queue.clone(), cb).unwrap()
|
||||
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
|
||||
.then_signal_fence_and_flush();
|
||||
|
||||
match future {
|
||||
Ok(future) => {
|
||||
previous_frame_end = Box::new(future) as Box<_>;
|
||||
}
|
||||
Err(FlushError::OutOfDate) => {
|
||||
recreate_swapchain = true;
|
||||
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
|
||||
}
|
||||
Err(e) => {
|
||||
println!("{:?}", e);
|
||||
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
|
||||
}
|
||||
}
|
||||
|
||||
let mut done = false;
|
||||
events_loop.poll_events(|ev| {
|
||||
match ev {
|
||||
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
|
||||
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
|
||||
_ => ()
|
||||
}
|
||||
});
|
||||
if done { return; }
|
||||
}
|
||||
}
|
||||
|
||||
/// This method is called once during initialization, then again whenever the window is resized
|
||||
fn window_size_dependent_setup(
|
||||
images: &[Arc<SwapchainImage<Window>>],
|
||||
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
|
||||
dynamic_state: &mut DynamicState
|
||||
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
|
||||
let dimensions = images[0].dimensions();
|
||||
|
||||
let viewport = Viewport {
|
||||
origin: [0.0, 0.0],
|
||||
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
|
||||
depth_range: 0.0 .. 1.0,
|
||||
};
|
||||
dynamic_state.viewports = Some(vec!(viewport));
|
||||
|
||||
images.iter().map(|image| {
|
||||
Arc::new(
|
||||
Framebuffer::start(render_pass.clone())
|
||||
.add(image.clone()).unwrap()
|
||||
.build().unwrap()
|
||||
) as Arc<dyn FramebufferAbstract + Send + Sync>
|
||||
}).collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
mod vs {
|
||||
vulkano_shaders::shader!{
|
||||
ty: "vertex",
|
||||
src: "
|
||||
#version 450
|
||||
layout(location = 0) in vec2 position;
|
||||
layout(location = 0) out vec2 tex_coords;
|
||||
void main() {
|
||||
gl_Position = vec4(position, 0.0, 1.0);
|
||||
tex_coords = position + vec2(0.5);
|
||||
}"
|
||||
}
|
||||
}
|
||||
|
||||
mod fs {
|
||||
vulkano_shaders::shader!{
|
||||
ty: "fragment",
|
||||
src: "
|
||||
#version 450
|
||||
layout(location = 0) in vec2 tex_coords;
|
||||
layout(location = 0) out vec4 f_color;
|
||||
layout(set = 0, binding = 0) uniform sampler2D tex;
|
||||
void main() {
|
||||
f_color = texture(tex, tex_coords);
|
||||
}"
|
||||
}
|
||||
}
|
@ -0,0 +1,3 @@
|
||||
pub mod polygon;
|
||||
pub mod sprite;
|
||||
pub mod rect;
|
@ -0,0 +1,71 @@
|
||||
use std::sync::Arc;
|
||||
use crate::canvas::*;
|
||||
use crate::canvas::managed::handles::{CanvasFontHandle, CanvasImageHandle, CanvasTextureHandle, Handle};
|
||||
use crate::canvas::canvas_frame::{Drawable};
|
||||
use crate::util::vertex::{VertexTypes, TextureVertex3D, Vertex3D, ColorVertex3D};
|
||||
use crate::drawables::sprite::Sprite;
|
||||
|
||||
/// Convex multi verticy polygon
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Polygon {
|
||||
|
||||
pub verts: VertexTypes,
|
||||
|
||||
position: (f32, f32),
|
||||
size: (f32, f32),
|
||||
}
|
||||
|
||||
/// Container class which implements drawable.
|
||||
impl Polygon {
|
||||
|
||||
///
|
||||
pub fn new(position: (f32, f32),
|
||||
size: (f32, f32),
|
||||
depth: u32,) -> Polygon {
|
||||
|
||||
let normalized_depth = (depth as f32 / 255.0);
|
||||
|
||||
let verts = vec![
|
||||
ColorVertex3D{v_position: [-0.5, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-0.25, 0.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-0.25, 0.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [0.0, 0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [0.25, 0.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [0.0, 0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [0.5, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [0.25, 0.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [0.25, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [0.5, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [0.25, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [0.0, -0.1, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-0.25, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [0.0, -0.1, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-0.5, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-1.0, 1.0, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
ColorVertex3D{v_position: [-0.25, -0.5, normalized_depth], color: [1.0, 1.0, 0.0, 1.0] },
|
||||
];
|
||||
|
||||
|
||||
Polygon {
|
||||
verts: VertexTypes::ColorType(verts),
|
||||
position: position,
|
||||
size: size,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Drawable for Polygon {
|
||||
fn get(&self) -> VertexTypes {
|
||||
self.verts.clone()
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -0,0 +1,57 @@
|
||||
use crate::canvas::canvas_frame::Drawable;
|
||||
use crate::util::vertex::{VertexTypes, ColorVertex3D};
|
||||
|
||||
///
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Rect {
|
||||
|
||||
pub verts: VertexTypes,
|
||||
|
||||
position: (f32, f32),
|
||||
size: (f32, f32),
|
||||
}
|
||||
|
||||
/// Container class which implements drawable.
|
||||
impl Rect {
|
||||
|
||||
///
|
||||
pub fn new(position: (f32, f32),
|
||||
size: (f32, f32),
|
||||
depth: u32) -> Rect {
|
||||
|
||||
let normalized_depth = (depth as f32 / 255.0);
|
||||
|
||||
let verts = vec![
|
||||
ColorVertex3D{
|
||||
v_position: [position.0, position.1, normalized_depth], // top left
|
||||
color: [0.0, 1.0, 1.0, 0.5] },
|
||||
ColorVertex3D{
|
||||
v_position: [position.0, position.1 + size.1, normalized_depth], // bottom left
|
||||
color: [1.0, 1.0, 1.0, 1.0] },
|
||||
ColorVertex3D{
|
||||
v_position: [position.0 + size.0, position.1 + size.1, normalized_depth], // bottom right
|
||||
color: [1.0, 1.0, 1.0, 1.0] },
|
||||
ColorVertex3D{
|
||||
v_position: [position.0, position.1, normalized_depth], // top left
|
||||
color: [1.0, 1.0, 1.0, 1.0] },
|
||||
ColorVertex3D{
|
||||
v_position: [position.0 + size.0, position.1 + size.1, normalized_depth], // bottom right
|
||||
color: [1.0, 1.0, 1.0, 1.0] },
|
||||
ColorVertex3D{
|
||||
v_position: [position.0 + size.0, position.1, normalized_depth], // top right
|
||||
color: [1.0, 1.0, 1.0, 1.0] },
|
||||
];
|
||||
|
||||
Rect {
|
||||
verts: VertexTypes::ColorType(verts),
|
||||
position: position,
|
||||
size: size,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Drawable for Rect {
|
||||
fn get(&self) -> VertexTypes {
|
||||
self.verts.clone()
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in new issue