still working on getting ownership of everything squared away

master
mitchellhansen 6 years ago
parent 321f30b4cc
commit db06459bd6

@ -105,6 +105,7 @@ unsafe impl SpecializationConstants for SimpleSpecializationConstants {
pub struct VkProcessor<'a> {
pub shader_kernels: Option<Arc<ShaderKernels<'a>>>,
pub compute_kernel: Option<ComputeKernel>,
pub vertex_shader_path: PathBuf,
pub fragment_shader_path: PathBuf,
@ -121,8 +122,8 @@ pub struct VkProcessor<'a> {
pub image_buffer: Vec<u8>,
pub compute_image_buffers: Vec<Arc<CpuAccessibleBuffer<[u8]>>>,
pub settings_buffer: Option<Arc<CpuAccessibleBuffer<[u32]>>>,
pub swapchain: Option<Arc<Swapchain<Window>>>,
pub images: Option<Vec<Arc<SwapchainImage<Window>>>>,
// pub swapchain: Option<Arc<Swapchain<Window>>>,
// pub images: Option<Vec<Arc<SwapchainImage<Window>>>>,
pub xy: (u32, u32),
pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>,
pub vertex_buffer: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>,
@ -152,6 +153,7 @@ impl<'a> VkProcessor<'a> {
let queue = queues.next().unwrap();
VkProcessor {
shader_kernels: Option::None,
compute_kernel: Option::None,
vertex_shader_path: Default::default(),
fragment_shader_path: Default::default(),
@ -168,8 +170,6 @@ impl<'a> VkProcessor<'a> {
image_buffer: Vec::new(),
compute_image_buffers: Vec::new(),
settings_buffer: Option::None,
swapchain: Option::None,
images: Option::None,
xy: (0, 0),
render_pass: Option::None,
vertex_buffer: Option::None,
@ -184,189 +184,18 @@ impl<'a> VkProcessor<'a> {
self.compute_pipeline = Some(self.compute_kernel.clone().unwrap().get_pipeline());
}
pub fn compile_shaders(&mut self, filename: String, surface: &'a Arc<Surface<Window>>) {
// Before we can draw on the surface, we have to create what is called a swapchain. Creating
// a swapchain allocates the color buffers that will contain the image that will ultimately
// be visible on the screen. These images are returned alongside with the swapchain.
let (mut swapchain, images) = {
let capabilities = surface.capabilities(self.physical).unwrap();
let usage = capabilities.supported_usage_flags;
let alpha = capabilities.supported_composite_alpha.iter().next().unwrap();
// Choosing the internal format that the images will have.
let format = capabilities.supported_formats[0].0;
// Set the swapchains window dimensions
let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
// convert to physical pixels
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
// The window no longer exists so exit the application.
return;
};
Swapchain::new(self.device.clone(),
surface.clone(),
capabilities.min_image_count,
format,
initial_dimensions,
1, // Layers
usage,
&self.queue,
SurfaceTransform::Identity,
alpha,
PresentMode::Fifo, true, None).unwrap()
};
self.swapchain = Some(swapchain);
self.images = Some(images);
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut shader_path = project_root.clone();
shader_path.push(PathBuf::from("resources/shaders/"));
let mut vertex_shader_path = project_root.clone();
vertex_shader_path.push(PathBuf::from("resources/shaders/"));
vertex_shader_path.push(PathBuf::from(filename.clone() + ".vertex"));
let mut fragment_shader_path = project_root.clone();
fragment_shader_path.push(PathBuf::from("resources/shaders/"));
fragment_shader_path.push(PathBuf::from(filename.clone() + ".fragment"));
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
options.add_macro_definition("SETTING_POS_X", Some("0"));
options.add_macro_definition("SETTING_POS_Y", Some("1"));
options.add_macro_definition("SETTING_BUCKETS_START", Some("2"));
options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2"));
// TODO: better compile message, run til successful compile
let shader = sr::load(vertex_shader_path, fragment_shader_path)
.expect("Shader didn't compile");
let vulkano_entry =
sr::parse(&shader)
.expect("failed to parse");
let x1: Arc<ShaderModule> = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.fragment)
}.unwrap();
let x2 = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.vertex)
}.unwrap();
let frag_entry_point: GraphicsEntryPoint<SimpleSpecializationConstants, FragInput, FragOutput, FragLayout> = unsafe {
x1.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.frag_input,
vulkano_entry.frag_output,
vulkano_entry.frag_layout,
GraphicsShaderType::Fragment)
};
let vert_entry_point: GraphicsEntryPoint<SimpleSpecializationConstants, VertInput, VertOutput, VertLayout> = unsafe {
x2.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.vert_input,
vulkano_entry.vert_output,
vulkano_entry.vert_layout,
GraphicsShaderType::Vertex)
};
// The next step is to create a *render pass*, which is an object that describes where the
// output of the graphics pipeline will go. It describes the layout of the images
// where the colors, depth and/or stencil information will be written.
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
self.device.clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `load: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load: Clear,
// `store: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store: Store,
// `format: <ty>` indicates the type of the format of the image. This has to
// be one of the types of the `vulkano::format` module (or alternatively one
// of your structs that implements the `FormatDesc` trait). Here we use the
// same format as the swapchain.
format: self.swapchain.clone().unwrap().clone().format(),
// TODO:
samples: 1,
}
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {}
}
).unwrap());
self.render_pass = Some(render_pass);
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
let pipeline = GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
.vertex_input_single_buffer::<tVertex>()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(vert_entry_point, SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// The content of the vertex buffer describes a list of triangles.
.triangle_fan()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(frag_entry_point, SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(self.render_pass.clone().unwrap().clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(self.device.clone())
.unwrap();
self.graphics_pipeline = Some(Arc::new(pipeline));
self.shader_kernels = Some(Arc::new(
ShaderKernels::new(filename.clone(),
surface, self.queue.clone(),
self.physical,
self.device.clone())
));
}
// On resizes we have to recreate the swapchain
pub fn recreate_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
let dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().recreate_with_dimension(dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => panic!("Uh oh"),
Err(err) => panic!("{:?}", err)
};
self.swapchain = Some(new_swapchain);
self.images = Some(new_images);
//self.shader_kernels.unwrap().recreate_swapchain(surface);
}
pub fn load_buffers(&mut self, image_filename: String)
@ -500,7 +329,7 @@ impl<'a> VkProcessor<'a> {
pub fn run(&mut self, surface: &'a Arc<Surface<Window>>, mut frame_future: Box<dyn GpuFuture>) -> Box<dyn GpuFuture> {
let mut framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
let mut framebuffers = window_size_dependent_setup(&self.shader_kernels.clone().unwrap().swapchain_images.clone(),
self.render_pass.clone().unwrap().clone(),
&mut self.dynamic_state);
@ -512,8 +341,8 @@ impl<'a> VkProcessor<'a> {
// Whenever the window resizes we need to recreate everything dependent on the window size.
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
if recreate_swapchain {
self.recreate_swapchain(surface);
framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
//self.shader_kernels.unwrap().recreate_swapchain(surface);
framebuffers = window_size_dependent_setup(&self.shader_kernels.clone().unwrap().swapchain_images.clone(),
self.render_pass.clone().unwrap().clone(),
&mut self.dynamic_state);
recreate_swapchain = false;
@ -522,7 +351,7 @@ impl<'a> VkProcessor<'a> {
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.swapchain.clone().unwrap().clone(), None) {
let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.shader_kernels.clone().unwrap().swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
@ -585,7 +414,7 @@ impl<'a> VkProcessor<'a> {
// Wait on the previous frame, then execute the command buffer and present the image
let future = frame_future.join(acquire_future)
.then_execute(self.queue.clone(), command_buffer).unwrap()
.then_swapchain_present(self.queue.clone(), self.swapchain.clone().unwrap().clone(), image_num)
.then_swapchain_present(self.queue.clone(), self.shader_kernels.clone().unwrap().swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {

@ -3,7 +3,7 @@ use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc};
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract};
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract, GraphicsPipelineBuilder};
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use std::time::SystemTime;
@ -51,11 +51,11 @@ struct EntryPoint<'a> {
struct tVertex { position: [f32; 2] }
pub struct ShaderKernels<'a> {
swapchain : Arc<Swapchain<Window>>,
swapchain_images: Vec<Arc<SwapchainImage<Window>>>, // Surface which is drawn to
pub swapchain : Arc<Swapchain<Window>>,
pub swapchain_images: Vec<Arc<SwapchainImage<Window>>>, // Surface which is drawn to
pub physical: PhysicalDevice<'a>,
shader: CompiledShaders,
// shader: CompiledShaders,
options: CompileOptions<'a>,
@ -64,7 +64,7 @@ pub struct ShaderKernels<'a> {
device: Arc<Device>,
entry_point: EntryPoint<'a>,
// entry_point: EntryPoint<'a>,
}
// return the frame buffers
@ -101,43 +101,33 @@ impl<'a> ShaderKernels<'a> {
match self.graphics_pipeline.clone() {
Some(t) => t,
None => {
self.graphics_pipeline = Some(Arc::new(
GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
.vertex_input_single_buffer::<tVertex>()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(self.entry_point.vertex_entry_point.clone().unwrap(), SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// The content of the vertex buffer describes a list of triangles.
.triangle_fan()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(self.entry_point.frag_entry_point.clone().unwrap(), SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(self.render_pass.clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(self.device.clone())
.unwrap()
));
// TODO: Create new graphics pipeline
self.graphics_pipeline.clone().unwrap()
}
}
}
// On resizes we have to recreate the swapchain
pub fn recreate_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
let dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match self.swapchain.clone().recreate_with_dimension(dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => panic!("Uh oh"),
Err(err) => panic!("{:?}", err)
};
self.swapchain = new_swapchain;
self.swapchain_images = new_images;
}
pub fn new(filename: String,
surface: &'a Arc<Surface<Window>>,
queue: Arc<Queue>,
@ -185,33 +175,32 @@ impl<'a> ShaderKernels<'a> {
.expect("failed to parse");
let fragment_shader_module: Arc<ShaderModule> = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.fragment.clone())
let filenames1 = ShaderKernels::get_path(filename.clone());
let shader1 = sr::load(filenames1.0, filenames1.1)
.expect("Shader didn't compile");
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader1.fragment.clone())
}.unwrap();
let vertex_shader_module: Arc<ShaderModule> = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.vertex.clone())
let filenames1 = ShaderKernels::get_path(filename.clone());
let shader1 = sr::load(filenames1.0, filenames1.1)
.expect("Shader didn't compile");
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader1.vertex.clone())
}.unwrap();
let filenames = ShaderKernels::get_path(filename.clone());
let mut entry_point = EntryPoint {
compiled_shaders: sr::load(filenames.0, filenames.1)
.expect("Shader didn't compile"),
fragment_shader_module: fragment_shader_module,
vertex_shader_module: vertex_shader_module,
frag_entry_point: None,
vertex_entry_point: None,
};
entry_point.frag_entry_point = unsafe {
Some(entry_point.fragment_shader_module.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
let frag_entry_point = unsafe {
Some(fragment_shader_module.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.frag_input,
vulkano_entry.frag_output,
vulkano_entry.frag_layout,
GraphicsShaderType::Fragment))
};
entry_point.vertex_entry_point = unsafe {
Some(entry_point.vertex_shader_module.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
let vertex_entry_point = unsafe {
Some(vertex_shader_module.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.vert_input,
vulkano_entry.vert_output,
vulkano_entry.vert_layout,
@ -247,39 +236,6 @@ impl<'a> ShaderKernels<'a> {
).unwrap());
vulkano::impl_vertex!(tVertex, position);
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
let pipeline = GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
.vertex_input_single_buffer::<tVertex>()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(entry_point.vertex_entry_point.clone().unwrap(), SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// The content of the vertex buffer describes a list of triangles.
.triangle_fan()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(entry_point.frag_entry_point.clone().unwrap(), SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(device.clone())
.unwrap();
ShaderKernels {
@ -287,13 +243,41 @@ impl<'a> ShaderKernels<'a> {
swapchain_images: images,
physical: physical,
shader: shader,
options: CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap(),
render_pass: render_pass,
graphics_pipeline: Some(Arc::new(pipeline)),
graphics_pipeline: Some(Arc::new(GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
.vertex_input_single_buffer::<tVertex>()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(vertex_entry_point.clone().unwrap(), SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// The content of the vertex buffer describes a list of triangles.
.triangle_fan()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(frag_entry_point.clone().unwrap(), SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(device.clone())
.unwrap())),
device: device,
entry_point: entry_point,
render_pass: render_pass,
}
}

Loading…
Cancel
Save