use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState}; use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue}; use vulkano::instance::{Instance, PhysicalDevice}; use vulkano::sync::{GpuFuture, FlushError, NowFuture}; use vulkano::sync::now; use vulkano::sync; use std::sync::Arc; use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface, SwapchainCreationError, AcquireError, Capabilities, FullscreenExclusive, ColorSpace}; use vulkano::image::swapchain::SwapchainImage; use crate::compute::compu_state::CompuState; use vulkano::image::ImageUsage; use crate::compute::compu_frame::CompuFrame; use crate::canvas::canvas_frame::{CanvasFrame}; use std::time::Duration; use vulkano::pipeline::depth_stencil::{DynamicStencilValue, StencilFaceFlags}; use vulkano::pipeline::vertex::{OneVertexOneInstanceDefinition, SingleBufferDefinition}; use crate::canvas::canvas_state::CanvasState; use crate::canvas::managed::shader::generic_shader::GenericShader; use crate::canvas::managed::shader::text_shader::TextShader; use crate::canvas::managed::handles::{CanvasTextureHandle, CompiledShaderHandle, CanvasFontHandle, CanvasImageHandle}; use crate::compute::managed::handles::{CompuKernelHandle, CompuBufferHandle}; use crate::util::vertex::{VertexType, ColorVertex3D, TextVertex3D, TextureVertex3D, ImageVertex3D}; use vulkano_text::DrawText; use winit::window::{Window, WindowBuilder}; use vulkano::instance::debug::DebugCallback; use winit::dpi::LogicalSize; use vulkano_win::VkSurfaceBuild; use winit::event_loop::EventLoop; /// VKProcessor holds the vulkan instance information, the swapchain, /// and the compute and canvas states pub struct VkProcessor { // Vulkan state fields //pub physical: PhysicalDevice<'a>, pub device: Arc, pub queues: QueuesIter, pub queue: Arc, pub swapchain: Option>>, pub swapchain_images: Option>>>, pub swapchain_recreate_needed: bool, /// State holding textures, images, and their related vertex buffers canvas_state: CanvasState, /// State holding compute_state: CompuState, capabilities: Capabilities, } impl VkProcessor { /// Creates a new VkProcessor from an instance and surface /// This includes the physical device, queues, compute and canvas state pub fn new(instance: Arc, surface: Arc>) -> VkProcessor { let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); let queue_family = physical.queue_families().find(|&q| { // We take the first queue that supports drawing to our window. q.supports_graphics() && surface.is_supported(q).unwrap_or(false) && q.supports_compute() }).unwrap(); let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() }; let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext, [(queue_family, 0.5)].iter().cloned()).unwrap(); let queue = queues.next().unwrap(); let capabilities = surface.capabilities(physical).unwrap(); VkProcessor { device: device.clone(), queue: queue.clone(), queues: queues, swapchain: None, swapchain_images: None, swapchain_recreate_needed: false, compute_state: CompuState::new(), capabilities: capabilities.clone(), canvas_state: CanvasState::new(queue, device, physical, capabilities), } } pub fn get_canvas_state(&self) -> &CanvasState { &self.canvas_state } /// Using the surface, we calculate the surface capabilities and create the swapchain and swapchain images pub fn create_swapchain(&mut self, instance: Arc, surface: Arc>) { let (mut swapchain, images) = { let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); let capabilities = surface.capabilities(physical).unwrap(); let usage = capabilities.supported_usage_flags; let alpha = capabilities.supported_composite_alpha.iter().next().unwrap(); // Choosing the internal format that the images will have. let format = capabilities.supported_formats[0].0; let colorspace = capabilities.supported_formats[0].1; // Set the swapchains window dimensions let initial_dimensions = if let dimensions = surface.window().inner_size() { // convert to physical pixels let dimensions: (u32, u32) = dimensions.to_logical::(surface.window().scale_factor()).into(); [dimensions.0, dimensions.1] } else { // The window no longer exists so exit the application. panic!("window closed"); }; Swapchain::new(self.device.clone(), surface.clone(), capabilities.min_image_count, // number of attachment images format, initial_dimensions, 1, // Layers ImageUsage::color_attachment(), &self.queue, SurfaceTransform::Identity, alpha, PresentMode::Immediate, FullscreenExclusive::Default, true, colorspace).unwrap() }; self.swapchain = Some(swapchain); self.swapchain_images = Some(images); } /// On screen resizes, the swapchain and images must be recreated pub fn recreate_swapchain(&mut self, surface: &Arc>) { let dimensions = if let dimensions = surface.window().inner_size() { let dimensions: (u32, u32) = dimensions.to_logical::(surface.window().scale_factor()).into(); [dimensions.0, dimensions.1] } else { return; }; let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().clone() .recreate_with_dimensions(dimensions) { Ok(r) => r, // This error tends to happen when the user is manually resizing the window. // Simply restarting the loop is the easiest way to fix this issue. Err(SwapchainCreationError::UnsupportedDimensions) => panic!("Uh oh"), Err(err) => panic!("{:?}", err) }; self.swapchain = Some(new_swapchain); self.swapchain_images = Some(new_images); } /// A hardcoded list of textures which can be preloaded from this function pub fn preload_textures(&mut self) { self.canvas_state.load_texture(String::from("ford2.jpg")); self.canvas_state.load_texture(String::from("funky-bird.jpg")); self.canvas_state.load_texture(String::from("button.png")); self.canvas_state.load_texture(String::from("background.jpg")); self.canvas_state.load_texture(String::from("test2.png")); self.canvas_state.load_texture(String::from("sfml.png")); } /// A hardcoded list of kernels which can be preloaded from this function pub fn preload_kernels(&mut self) { self.compute_state.new_kernel(String::from("simple-homogenize.compute"), self.device.clone()); self.compute_state.new_kernel(String::from("simple-edge.compute"), self.device.clone()); } /// A hardcoded list of shaders which can be preloaded from this function pub fn preload_shaders(&mut self) { self.canvas_state.load_shader::(String::from("color-passthrough"), self.capabilities.clone()); self.canvas_state.load_shader::(String::from("simple_texture"), self.capabilities.clone()); self.canvas_state.load_shader::(String::from("simple_image"), self.capabilities.clone()); self.canvas_state.load_shader::(String::from("simple_text"), self.capabilities.clone()); } /// A hardcoded list of shaders which can be proloaded from this function pub fn preload_fonts(&mut self) { //self.canvas_state.load_font(String::from("sansation.ttf")); } /// O(n) Lookup for the matching texture string pub fn get_texture_handle(&self, texture_name: String) -> Option> { self.canvas_state.get_texture_handle(texture_name) } /// O(n) Lookup for the matching kernel string pub fn get_kernel_handle(&self, kernel_name: String) -> Option> { self.compute_state.get_kernel_handle(kernel_name) } /// O(n) Lookup for the matching shader string pub fn get_shader_handle(&self, shader_name: String) -> Option> { self.canvas_state.get_shader_handle(shader_name) } pub fn get_font_handle(&self, font_name: String) -> Option> { self.canvas_state.get_font_handle(font_name) } /// Create a new image which has the transfer usage pub fn new_swap_image(&mut self, dimensions: (u32, u32)) -> Arc { let mut usage = ImageUsage::none(); usage.transfer_destination = true; usage.storage = true; self.canvas_state.create_image(dimensions, usage) } /// Builds a compute buffer and returns it's handle pub fn new_compute_buffer(&mut self, data: Vec, dimensions: (u32, u32), stride: u32) -> Arc { self.compute_state.new_compute_buffer(data, dimensions, stride, self.device.clone()) } /// Takes a compute buffer handle and returns the read data pub fn read_compute_buffer(&mut self, handle: Arc) -> Vec { self.compute_state.read_compute_buffer(handle) } /// Takes a compute buffer handle and writes the received data pub fn write_compute_buffer(&self, handle: Arc, data: Vec) { self.compute_state.write_compute_buffer(handle, data) } /// Run the VKprocessor for a single frame, consuming the Canvas/Compu Frames pub fn run(&mut self, surface: &Arc>, canvas_frame: &CanvasFrame, compute_frame: &CompuFrame, ) { { let g = hprof::enter("Waiting at queue"); self.queue.wait(); } let g = hprof::enter("Frame buffer, future, swapchain recreate"); let mut framebuffers = self.canvas_state.window_size_dependent_setup(&self.swapchain_images.clone().unwrap().clone()); // Whenever the window resizes we need to recreate everything dependent on the window size. // In this example that includes the swapchain, the framebuffers and the dynamic state viewport. if self.swapchain_recreate_needed { self.recreate_swapchain(surface); framebuffers = self.canvas_state.window_size_dependent_setup(&self.swapchain_images.clone().unwrap().clone()); self.swapchain_recreate_needed = false; } // This function can block if no image is available. The parameter is an optional timeout // after which the function call will return an error. let (image_num, suboptimal, acquire_future) = match vulkano::swapchain::acquire_next_image( self.swapchain.clone().unwrap().clone(), None, ) { Ok(r) => r, Err(AcquireError::OutOfDate) => { self.swapchain_recreate_needed = true; return; } Err(err) => panic!("{:?}", err) }; if suboptimal { self.swapchain_recreate_needed = true; } drop(g); let allocated_buffers = { // take the canvas frame and create the vertex buffers // TODO: This performs gpu buffer creation. Shouldn't be in hotpath?? let g = hprof::enter("Canvas creates GPU buffers"); self.canvas_state.allocate(canvas_frame) }; // let mut draw_text = DrawText::new(self.device.clone(), self.queue.clone(), self.swapchain.unwrap().clone(), &self.swapchain_images.images); let mut command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family()).unwrap(); let g = hprof::enter("Push compute commands to command buffer"); // Add the compute commands self.compute_state.compute_commands(compute_frame, &mut command_buffer, &self.canvas_state); drop(g); let g = hprof::enter("Push draw commands to command buffer"); // Add the draw commands //let mut command_buffer = self.canvas_state.draw_commands(command_buffer, framebuffers, image_num); self.canvas_state.draw_commands(&mut command_buffer, framebuffers, image_num, allocated_buffers); // And build let command_buffer = command_buffer.build().unwrap(); drop(g); // Wait on the previous frame, then execute the command buffer and present the image { let g = hprof::enter("Joining on the framebuffer"); let mut future = sync::now(self.device.clone()) .join(acquire_future); drop(g); let g = hprof::enter("Running the kernel and waiting on the future"); let future = future .then_execute(self.queue.clone(), command_buffer).unwrap() .then_swapchain_present(self.queue.clone(), self.swapchain.clone().unwrap().clone(), image_num) .then_signal_fence_and_flush(); match future { Ok(future) => { future.wait(None).unwrap(); } Err(FlushError::OutOfDate) => { self.swapchain_recreate_needed = true; } Err(e) => { println!("{:?}", e); } } } } }