use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState}; use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue}; use vulkano::instance::{Instance, PhysicalDevice}; use vulkano::sync::{GpuFuture, FlushError}; use vulkano::sync; use std::sync::Arc; use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface, SwapchainCreationError, AcquireError, Capabilities}; use vulkano::image::swapchain::SwapchainImage; use winit::{Window}; use crate::canvas::{CanvasState, CanvasFrame, ImageHandle}; use crate::compu_state::CompuState; use vulkano::image::ImageUsage; use crate::compu_buffer::CompuBufferHandle; use crate::compu_frame::CompuFrame; pub struct VkProcessor<'a> { // Vulkan state fields pub instance: Arc, pub physical: PhysicalDevice<'a>, pub device: Arc, pub queues: QueuesIter, pub queue: Arc, pub dynamic_state: DynamicState, pub swapchain: Option>>, pub swapchain_images: Option>>>, swapchain_recreate_needed: bool, compute_state: CompuState, capabilities: Capabilities, canvas: CanvasState, } impl<'a> VkProcessor<'a> { pub fn new(instance: &'a Arc, surface: &'a Arc>) -> VkProcessor<'a> { let physical = PhysicalDevice::enumerate(instance).next().unwrap(); let queue_family = physical.queue_families().find(|&q| { // We take the first queue that supports drawing to our window. q.supports_graphics() && surface.is_supported(q).unwrap_or(false) && q.supports_compute() }).unwrap(); let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() }; let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext, [(queue_family, 0.5)].iter().cloned()).unwrap(); let queue = queues.next().unwrap(); let capabilities = surface.capabilities(physical).unwrap(); VkProcessor { instance: instance.clone(), physical: physical.clone(), device: device.clone(), queue: queue.clone(), queues: queues, dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None }, compute_kernel: None, compute_image: None, swapchain: None, swapchain_images: None, swapchain_recreate_needed: false, compute_state: CompuState::new(), capabilities: capabilities.clone(), canvas: CanvasState::new(queue, device, physical, capabilities), } } pub fn create_swapchain(&mut self, surface: &'a Arc>) { let (mut swapchain, images) = { let capabilities = surface.capabilities(self.physical).unwrap(); let usage = capabilities.supported_usage_flags; let alpha = capabilities.supported_composite_alpha.iter().next().unwrap(); // Choosing the internal format that the images will have. let format = capabilities.supported_formats[0].0; // Set the swapchains window dimensions let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() { // convert to physical pixels let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { // The window no longer exists so exit the application. panic!("window closed"); }; Swapchain::new(self.device.clone(), surface.clone(), capabilities.min_image_count, // number of attachment images format, initial_dimensions, 1, // Layers usage, &self.queue, SurfaceTransform::Identity, alpha, PresentMode::Fifo, true, None).unwrap() }; self.swapchain = Some(swapchain); self.swapchain_images = Some(images); } // On resizes we have to recreate the swapchain pub fn recreate_swapchain(&mut self, surface: &'a Arc>) { let dimensions = if let Some(dimensions) = surface.window().get_inner_size() { let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { return; }; let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().clone().recreate_with_dimension(dimensions) { Ok(r) => r, // This error tends to happen when the user is manually resizing the window. // Simply restarting the loop is the easiest way to fix this issue. Err(SwapchainCreationError::UnsupportedDimensions) => panic!("Uh oh"), Err(err) => panic!("{:?}", err) }; self.swapchain = Some(new_swapchain); self.swapchain_images = Some(new_images); } pub fn preload_textures(&mut self) { self.canvas.load_texture_from_filename(String::from("funky-bird.jpg")); } pub fn preload_kernels(&mut self) { } pub fn preload_shaders(&mut self) { } pub fn get_texture_handle(&self, texture_name: String) -> Option> { None } pub fn get_kernel_handle(&self, kernel_name: String) -> Option> { None } pub fn get_shader_handle(&self, shader_name: String) -> Option> { None } // Create a new image which has the transfer usage pub fn new_swap_image(&mut self, dimensions: (u32, u32)) -> Arc { let mut usage = ImageUsage::none(); usage.transfer_destination = true; usage.storage = true; self.canvas.create_image(dimensions, usage) } pub fn new_compute_buffer(&mut self, data: Vec, dimensions: (u32, u32), stride: u32) -> Arc { self.compute_state.new_compute_buffer(data, dimensions, stride, self.device.clone()) } pub fn read_compute_buffer(&mut self, handle: Arc) -> Vec { self.compute_state.read_compute_buffer(handle) } pub fn write_compute_buffer(&self, handle: Arc, data: Vec) { self.compute_state.write_compute_buffer(handle, data) } pub fn run(&mut self, surface: &'a Arc>, mut frame_future: Box, canvas_frame: CanvasFrame, compute_frame: CompuFrame, ) -> Box { // take the canvas frame and create the vertex buffers // TODO: This performs gpu buffer creation. Shouldn't be in hotpath self.canvas.draw(canvas_frame); let mut framebuffers = self.canvas.window_size_dependent_setup(&self.swapchain_images.clone().unwrap().clone()); // The docs said to call this on each loop. frame_future.cleanup_finished(); // Whenever the window resizes we need to recreate everything dependent on the window size. // In this example that includes the swapchain, the framebuffers and the dynamic state viewport. if self.swapchain_recreate_needed { self.recreate_swapchain(surface); framebuffers = self.canvas.window_size_dependent_setup(&self.swapchain_images.clone().unwrap().clone()); self.swapchain_recreate_needed = false; } // This function can block if no image is available. The parameter is an optional timeout // after which the function call will return an error. let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.swapchain.clone().unwrap().clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { self.swapchain_recreate_needed = true; return Box::new(sync::now(self.device.clone())) as Box<_>; } Err(err) => panic!("{:?}", err) }; let mut command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family()).unwrap(); // Add the compute commands let mut command_buffer = self.compute_state.compute_commands(compute_frame, command_buffer, &self.canvas); // Add the draw commands let mut command_buffer = self.canvas.draw_commands(command_buffer, framebuffers, image_num); // And build let command_buffer = command_buffer.build().unwrap(); // Wait on the previous frame, then execute the command buffer and present the image let future = frame_future.join(acquire_future) .then_execute(self.queue.clone(), command_buffer).unwrap() .then_swapchain_present(self.queue.clone(), self.swapchain.clone().unwrap().clone(), image_num) .then_signal_fence_and_flush(); match future { Ok(future) => { (Box::new(future) as Box<_>) } Err(FlushError::OutOfDate) => { self.swapchain_recreate_needed = true; (Box::new(sync::now(self.device.clone())) as Box<_>) } Err(e) => { println!("{:?}", e); (Box::new(sync::now(self.device.clone())) as Box<_>) } } } }