<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source to the Rust file `/home/mrh/.cargo/registry/src/github.com-1ecc6299db9ec823/alga-0.9.1/src/general/two_operators.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>two_operators.rs.html -- source</title><link rel="stylesheet" type="text/css" href="../../../normalize.css"><link rel="stylesheet" type="text/css" href="../../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" type="text/css" href="../../../dark.css"><link rel="stylesheet" type="text/css" href="../../../light.css" id="themeStyle"><script src="../../../storage.js"></script><noscript><link rel="stylesheet" href="../../../noscript.css"></noscript><link rel="shortcut icon" href="../../../favicon.ico"><style type="text/css">#crate-search{background-image:url("../../../down-arrow.svg");}</style></head><body class="rustdoc source"><!--[if lte IE 8]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><div class="sidebar-menu">&#9776;</div><a href='../../../alga/index.html'><div class='logo-container'><img src='../../../rust-logo.png' alt='logo'></div></a></nav><div class="theme-picker"><button id="theme-picker" aria-label="Pick another theme!"><img src="../../../brush.svg" width="18" alt="Pick another theme!"></button><div id="theme-choices"></div></div><script src="../../../theme.js"></script><nav class="sub"><form class="search-form js-only"><div class="search-container"><div><select id="crate-search"><option value="All crates">All crates</option></select><input class="search-input" name="search" autocomplete="off" spellcheck="false" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"></div><a id="settings-menu" href="../../../settings.html"><img src="../../../wheel.svg" width="18" alt="Change settings"></a></div></form></nav><section id="main" class="content"><pre class="line-numbers"><span id="1">  1</span>
<span id="2">  2</span>
<span id="3">  3</span>
<span id="4">  4</span>
<span id="5">  5</span>
<span id="6">  6</span>
<span id="7">  7</span>
<span id="8">  8</span>
<span id="9">  9</span>
<span id="10"> 10</span>
<span id="11"> 11</span>
<span id="12"> 12</span>
<span id="13"> 13</span>
<span id="14"> 14</span>
<span id="15"> 15</span>
<span id="16"> 16</span>
<span id="17"> 17</span>
<span id="18"> 18</span>
<span id="19"> 19</span>
<span id="20"> 20</span>
<span id="21"> 21</span>
<span id="22"> 22</span>
<span id="23"> 23</span>
<span id="24"> 24</span>
<span id="25"> 25</span>
<span id="26"> 26</span>
<span id="27"> 27</span>
<span id="28"> 28</span>
<span id="29"> 29</span>
<span id="30"> 30</span>
<span id="31"> 31</span>
<span id="32"> 32</span>
<span id="33"> 33</span>
<span id="34"> 34</span>
<span id="35"> 35</span>
<span id="36"> 36</span>
<span id="37"> 37</span>
<span id="38"> 38</span>
<span id="39"> 39</span>
<span id="40"> 40</span>
<span id="41"> 41</span>
<span id="42"> 42</span>
<span id="43"> 43</span>
<span id="44"> 44</span>
<span id="45"> 45</span>
<span id="46"> 46</span>
<span id="47"> 47</span>
<span id="48"> 48</span>
<span id="49"> 49</span>
<span id="50"> 50</span>
<span id="51"> 51</span>
<span id="52"> 52</span>
<span id="53"> 53</span>
<span id="54"> 54</span>
<span id="55"> 55</span>
<span id="56"> 56</span>
<span id="57"> 57</span>
<span id="58"> 58</span>
<span id="59"> 59</span>
<span id="60"> 60</span>
<span id="61"> 61</span>
<span id="62"> 62</span>
<span id="63"> 63</span>
<span id="64"> 64</span>
<span id="65"> 65</span>
<span id="66"> 66</span>
<span id="67"> 67</span>
<span id="68"> 68</span>
<span id="69"> 69</span>
<span id="70"> 70</span>
<span id="71"> 71</span>
<span id="72"> 72</span>
<span id="73"> 73</span>
<span id="74"> 74</span>
<span id="75"> 75</span>
<span id="76"> 76</span>
<span id="77"> 77</span>
<span id="78"> 78</span>
<span id="79"> 79</span>
<span id="80"> 80</span>
<span id="81"> 81</span>
<span id="82"> 82</span>
<span id="83"> 83</span>
<span id="84"> 84</span>
<span id="85"> 85</span>
<span id="86"> 86</span>
<span id="87"> 87</span>
<span id="88"> 88</span>
<span id="89"> 89</span>
<span id="90"> 90</span>
<span id="91"> 91</span>
<span id="92"> 92</span>
<span id="93"> 93</span>
<span id="94"> 94</span>
<span id="95"> 95</span>
<span id="96"> 96</span>
<span id="97"> 97</span>
<span id="98"> 98</span>
<span id="99"> 99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
<span id="215">215</span>
<span id="216">216</span>
<span id="217">217</span>
<span id="218">218</span>
<span id="219">219</span>
<span id="220">220</span>
<span id="221">221</span>
<span id="222">222</span>
<span id="223">223</span>
<span id="224">224</span>
<span id="225">225</span>
<span id="226">226</span>
<span id="227">227</span>
<span id="228">228</span>
<span id="229">229</span>
<span id="230">230</span>
<span id="231">231</span>
<span id="232">232</span>
<span id="233">233</span>
<span id="234">234</span>
<span id="235">235</span>
<span id="236">236</span>
<span id="237">237</span>
<span id="238">238</span>
<span id="239">239</span>
<span id="240">240</span>
<span id="241">241</span>
<span id="242">242</span>
<span id="243">243</span>
<span id="244">244</span>
<span id="245">245</span>
<span id="246">246</span>
<span id="247">247</span>
<span id="248">248</span>
<span id="249">249</span>
<span id="250">250</span>
<span id="251">251</span>
<span id="252">252</span>
<span id="253">253</span>
<span id="254">254</span>
<span id="255">255</span>
<span id="256">256</span>
<span id="257">257</span>
<span id="258">258</span>
<span id="259">259</span>
<span id="260">260</span>
<span id="261">261</span>
<span id="262">262</span>
<span id="263">263</span>
<span id="264">264</span>
<span id="265">265</span>
<span id="266">266</span>
<span id="267">267</span>
<span id="268">268</span>
<span id="269">269</span>
<span id="270">270</span>
<span id="271">271</span>
<span id="272">272</span>
<span id="273">273</span>
<span id="274">274</span>
<span id="275">275</span>
<span id="276">276</span>
<span id="277">277</span>
<span id="278">278</span>
<span id="279">279</span>
<span id="280">280</span>
<span id="281">281</span>
<span id="282">282</span>
<span id="283">283</span>
<span id="284">284</span>
<span id="285">285</span>
<span id="286">286</span>
<span id="287">287</span>
<span id="288">288</span>
<span id="289">289</span>
</pre><div class="example-wrap"><pre class="rust ">
<span class="kw">use</span> <span class="ident">approx</span>::<span class="ident">RelativeEq</span>;
<span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;decimal&quot;</span>)]</span>
<span class="kw">use</span> <span class="ident">decimal</span>::<span class="ident">d128</span>;
<span class="kw">use</span> <span class="ident">num</span>::<span class="ident">Num</span>;
<span class="kw">use</span> <span class="ident">num_complex</span>::<span class="ident">Complex</span>;

<span class="kw">use</span> <span class="kw">crate</span>::<span class="ident">general</span>::<span class="ident">wrapper</span>::<span class="ident">Wrapper</span> <span class="kw">as</span> <span class="ident">W</span>;
<span class="kw">use</span> <span class="kw">crate</span>::<span class="ident">general</span>::{
    <span class="ident">AbstractGroupAbelian</span>, <span class="ident">AbstractMonoid</span>, <span class="ident">Additive</span>, <span class="ident">ClosedNeg</span>, <span class="ident">Multiplicative</span>, <span class="ident">Operator</span>,
};

<span class="doccomment">/// A **ring** is the combination of an Abelian group and a multiplicative monoid structure.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// A ring is equipped with:</span>
<span class="doccomment">///</span>
<span class="doccomment">/// * An abstract operator (usually the addition, &quot;+&quot;) that fulfills the constraints of an Abelian group.</span>
<span class="doccomment">///</span>
<span class="doccomment">///     *An Abelian group is a set with a closed commutative and associative addition with the divisibility property and an identity element.*</span>
<span class="doccomment">/// * A second abstract operator (usually the multiplication, &quot;×&quot;) that fulfills the constraints of a monoid.</span>
<span class="doccomment">///</span>
<span class="doccomment">///     *A set equipped with a closed associative multiplication with the divisibility property and an identity element.*</span>
<span class="doccomment">///</span>
<span class="doccomment">/// The multiplication is distributive over the addition:</span>
<span class="doccomment">///</span>
<span class="doccomment">/// # Distributivity</span>
<span class="doccomment">///</span>
<span class="doccomment">/// ~~~notrust</span>
<span class="doccomment">/// a, b, c ∈ Self, a × (b + c) = a × b + a × c.</span>
<span class="doccomment">/// ~~~</span>
<span class="kw">pub</span> <span class="kw">trait</span> <span class="ident">AbstractRing</span><span class="op">&lt;</span><span class="ident">A</span>: <span class="ident">Operator</span> <span class="op">=</span> <span class="ident">Additive</span>, <span class="ident">M</span>: <span class="ident">Operator</span> <span class="op">=</span> <span class="ident">Multiplicative</span><span class="op">&gt;</span>:
    <span class="ident">AbstractGroupAbelian</span><span class="op">&lt;</span><span class="ident">A</span><span class="op">&gt;</span> <span class="op">+</span> <span class="ident">AbstractMonoid</span><span class="op">&lt;</span><span class="ident">M</span><span class="op">&gt;</span>
{
    <span class="doccomment">/// Returns `true` if the multiplication and addition operators are distributive for</span>
    <span class="doccomment">/// the given argument tuple. Approximate equality is used for verifications.</span>
    <span class="kw">fn</span> <span class="ident">prop_mul_and_add_are_distributive_approx</span>(<span class="ident">args</span>: (<span class="self">Self</span>, <span class="self">Self</span>, <span class="self">Self</span>)) <span class="op">-</span><span class="op">&gt;</span> <span class="ident">bool</span>
    <span class="kw">where</span>
        <span class="self">Self</span>: <span class="ident">RelativeEq</span>,
    {
        <span class="kw">let</span> (<span class="ident">a</span>, <span class="ident">b</span>, <span class="ident">c</span>) <span class="op">=</span> <span class="ident">args</span>;
        <span class="kw">let</span> <span class="ident">a</span> <span class="op">=</span> <span class="op">|</span><span class="op">|</span> <span class="ident">W</span>::<span class="op">&lt;</span><span class="kw">_</span>, <span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>::<span class="ident">new</span>(<span class="ident">a</span>.<span class="ident">clone</span>());
        <span class="kw">let</span> <span class="ident">b</span> <span class="op">=</span> <span class="op">|</span><span class="op">|</span> <span class="ident">W</span>::<span class="op">&lt;</span><span class="kw">_</span>, <span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>::<span class="ident">new</span>(<span class="ident">b</span>.<span class="ident">clone</span>());
        <span class="kw">let</span> <span class="ident">c</span> <span class="op">=</span> <span class="op">|</span><span class="op">|</span> <span class="ident">W</span>::<span class="op">&lt;</span><span class="kw">_</span>, <span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>::<span class="ident">new</span>(<span class="ident">c</span>.<span class="ident">clone</span>());

        <span class="comment">// Left distributivity</span>
        <span class="macro">relative_eq</span><span class="macro">!</span>(<span class="ident">a</span>() <span class="op">*</span> (<span class="ident">b</span>() <span class="op">+</span> <span class="ident">c</span>()), <span class="ident">a</span>() <span class="op">*</span> <span class="ident">b</span>() <span class="op">+</span> <span class="ident">a</span>() <span class="op">*</span> <span class="ident">c</span>()) <span class="kw-2">&amp;</span><span class="op">&amp;</span>
        <span class="comment">// Right distributivity</span>
        <span class="macro">relative_eq</span><span class="macro">!</span>((<span class="ident">b</span>() <span class="op">+</span> <span class="ident">c</span>()) <span class="op">*</span> <span class="ident">a</span>(), <span class="ident">b</span>() <span class="op">*</span> <span class="ident">a</span>() <span class="op">+</span> <span class="ident">c</span>() <span class="op">*</span> <span class="ident">a</span>())
    }

    <span class="doccomment">/// Returns `true` if the multiplication and addition operators are distributive for</span>
    <span class="doccomment">/// the given argument tuple.</span>
    <span class="kw">fn</span> <span class="ident">prop_mul_and_add_are_distributive</span>(<span class="ident">args</span>: (<span class="self">Self</span>, <span class="self">Self</span>, <span class="self">Self</span>)) <span class="op">-</span><span class="op">&gt;</span> <span class="ident">bool</span>
    <span class="kw">where</span>
        <span class="self">Self</span>: <span class="ident">Eq</span>,
    {
        <span class="kw">let</span> (<span class="ident">a</span>, <span class="ident">b</span>, <span class="ident">c</span>) <span class="op">=</span> <span class="ident">args</span>;
        <span class="kw">let</span> <span class="ident">a</span> <span class="op">=</span> <span class="op">|</span><span class="op">|</span> <span class="ident">W</span>::<span class="op">&lt;</span><span class="kw">_</span>, <span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>::<span class="ident">new</span>(<span class="ident">a</span>.<span class="ident">clone</span>());
        <span class="kw">let</span> <span class="ident">b</span> <span class="op">=</span> <span class="op">|</span><span class="op">|</span> <span class="ident">W</span>::<span class="op">&lt;</span><span class="kw">_</span>, <span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>::<span class="ident">new</span>(<span class="ident">b</span>.<span class="ident">clone</span>());
        <span class="kw">let</span> <span class="ident">c</span> <span class="op">=</span> <span class="op">|</span><span class="op">|</span> <span class="ident">W</span>::<span class="op">&lt;</span><span class="kw">_</span>, <span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>::<span class="ident">new</span>(<span class="ident">c</span>.<span class="ident">clone</span>());

        <span class="comment">// Left distributivity</span>
        <span class="ident">a</span>() <span class="op">*</span> (<span class="ident">b</span>() <span class="op">+</span> <span class="ident">c</span>()) <span class="op">=</span><span class="op">=</span> (<span class="ident">a</span>() <span class="op">*</span> <span class="ident">b</span>()) <span class="op">+</span> (<span class="ident">a</span>() <span class="op">*</span> <span class="ident">c</span>()) <span class="kw-2">&amp;</span><span class="op">&amp;</span>
        <span class="comment">// Right distributivity</span>
        (<span class="ident">b</span>() <span class="op">+</span> <span class="ident">c</span>()) <span class="op">*</span> <span class="ident">a</span>() <span class="op">=</span><span class="op">=</span> (<span class="ident">b</span>() <span class="op">*</span> <span class="ident">a</span>()) <span class="op">+</span> (<span class="ident">c</span>() <span class="op">*</span> <span class="ident">a</span>())
    }
}

<span class="doccomment">/// Implements the ring trait for types provided.</span>
<span class="doccomment">/// # Examples</span>
<span class="doccomment">///</span>
<span class="doccomment">/// ```</span>
<span class="doccomment">/// # #[macro_use]</span>
<span class="doccomment">/// # extern crate alga;</span>
<span class="doccomment">/// # use alga::general::{AbstractMagma, AbstractRing, Additive, Multiplicative, TwoSidedInverse, Identity};</span>
<span class="doccomment">/// # fn main() {}</span>
<span class="doccomment">/// #[derive(PartialEq, Clone)]</span>
<span class="doccomment">/// struct Wrapper&lt;T&gt;(T);</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: AbstractMagma&lt;Additive&gt;&gt; AbstractMagma&lt;Additive&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn operate(&amp;self, right: &amp;Self) -&gt; Self {</span>
<span class="doccomment">///         Wrapper(self.0.operate(&amp;right.0))</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: TwoSidedInverse&lt;Additive&gt;&gt; TwoSidedInverse&lt;Additive&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn two_sided_inverse(&amp;self) -&gt; Self {</span>
<span class="doccomment">///         Wrapper(self.0.two_sided_inverse())</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: Identity&lt;Additive&gt;&gt; Identity&lt;Additive&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn identity() -&gt; Self {</span>
<span class="doccomment">///         Wrapper(T::identity())</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: AbstractMagma&lt;Multiplicative&gt;&gt; AbstractMagma&lt;Multiplicative&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn operate(&amp;self, right: &amp;Self) -&gt; Self {</span>
<span class="doccomment">///         Wrapper(self.0.operate(&amp;right.0))</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: Identity&lt;Multiplicative&gt;&gt; Identity&lt;Multiplicative&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn identity() -&gt; Self {</span>
<span class="doccomment">///         Wrapper(T::identity())</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl_ring!(&lt;Additive, Multiplicative&gt; for Wrapper&lt;T&gt; where T: AbstractRing);</span>
<span class="doccomment">/// ```</span>
<span class="macro">macro_rules</span><span class="macro">!</span> <span class="ident">impl_ring</span>(
    (<span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">A</span>:<span class="ident">ty</span>, <span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span>:<span class="ident">ty</span><span class="op">&gt;</span> <span class="kw">for</span> $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>:<span class="ident">tt</span>)<span class="op">+</span>) <span class="op">=</span><span class="op">&gt;</span> {
        <span class="macro">impl_abelian</span><span class="macro">!</span>(<span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">A</span><span class="op">&gt;</span> <span class="kw">for</span> $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
        <span class="macro">impl_monoid</span><span class="macro">!</span>(<span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span><span class="op">&gt;</span> <span class="kw">for</span> $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
        <span class="macro">impl_marker</span><span class="macro">!</span>(<span class="macro-nonterminal">$</span><span class="kw">crate</span>::<span class="macro-nonterminal">general</span>::<span class="ident">AbstractRing</span><span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">A</span>, <span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span><span class="op">&gt;</span>; $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
    }
);

<span class="doccomment">/// A ring with a commutative multiplication.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// *A **commutative ring** is a set with two binary operations: a closed commutative and associative with the divisibility property and an identity element,</span>
<span class="doccomment">/// and another closed associative and **commutative** with the divisibility property and an identity element.*</span>
<span class="doccomment">///</span>
<span class="doccomment">/// # Commutativity</span>
<span class="doccomment">///</span>
<span class="doccomment">/// ```notrust</span>
<span class="doccomment">/// ∀ a, b ∈ Self, a × b = b × a</span>
<span class="doccomment">/// ```</span>
<span class="kw">pub</span> <span class="kw">trait</span> <span class="ident">AbstractRingCommutative</span><span class="op">&lt;</span><span class="ident">A</span>: <span class="ident">Operator</span> <span class="op">=</span> <span class="ident">Additive</span>, <span class="ident">M</span>: <span class="ident">Operator</span> <span class="op">=</span> <span class="ident">Multiplicative</span><span class="op">&gt;</span>:
    <span class="ident">AbstractRing</span><span class="op">&lt;</span><span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>
{
    <span class="doccomment">/// Returns `true` if the multiplication operator is commutative for the given argument tuple.</span>
    <span class="doccomment">/// Approximate equality is used for verifications.</span>
    <span class="kw">fn</span> <span class="ident">prop_mul_is_commutative_approx</span>(<span class="ident">args</span>: (<span class="self">Self</span>, <span class="self">Self</span>)) <span class="op">-</span><span class="op">&gt;</span> <span class="ident">bool</span>
    <span class="kw">where</span>
        <span class="self">Self</span>: <span class="ident">RelativeEq</span>,
    {
        <span class="kw">let</span> (<span class="ident">a</span>, <span class="ident">b</span>) <span class="op">=</span> <span class="ident">args</span>;
        <span class="kw">let</span> <span class="ident">a</span> <span class="op">=</span> <span class="op">|</span><span class="op">|</span> <span class="ident">W</span>::<span class="op">&lt;</span><span class="kw">_</span>, <span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>::<span class="ident">new</span>(<span class="ident">a</span>.<span class="ident">clone</span>());
        <span class="kw">let</span> <span class="ident">b</span> <span class="op">=</span> <span class="op">|</span><span class="op">|</span> <span class="ident">W</span>::<span class="op">&lt;</span><span class="kw">_</span>, <span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>::<span class="ident">new</span>(<span class="ident">b</span>.<span class="ident">clone</span>());

        <span class="macro">relative_eq</span><span class="macro">!</span>(<span class="ident">a</span>() <span class="op">*</span> <span class="ident">b</span>(), <span class="ident">b</span>() <span class="op">*</span> <span class="ident">a</span>())
    }

    <span class="doccomment">/// Returns `true` if the multiplication operator is commutative for the given argument tuple.</span>
    <span class="kw">fn</span> <span class="ident">prop_mul_is_commutative</span>(<span class="ident">args</span>: (<span class="self">Self</span>, <span class="self">Self</span>)) <span class="op">-</span><span class="op">&gt;</span> <span class="ident">bool</span>
    <span class="kw">where</span>
        <span class="self">Self</span>: <span class="ident">Eq</span>,
    {
        <span class="kw">let</span> (<span class="ident">a</span>, <span class="ident">b</span>) <span class="op">=</span> <span class="ident">args</span>;
        <span class="kw">let</span> <span class="ident">a</span> <span class="op">=</span> <span class="op">|</span><span class="op">|</span> <span class="ident">W</span>::<span class="op">&lt;</span><span class="kw">_</span>, <span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>::<span class="ident">new</span>(<span class="ident">a</span>.<span class="ident">clone</span>());
        <span class="kw">let</span> <span class="ident">b</span> <span class="op">=</span> <span class="op">|</span><span class="op">|</span> <span class="ident">W</span>::<span class="op">&lt;</span><span class="kw">_</span>, <span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span>::<span class="ident">new</span>(<span class="ident">b</span>.<span class="ident">clone</span>());

        <span class="ident">a</span>() <span class="op">*</span> <span class="ident">b</span>() <span class="op">=</span><span class="op">=</span> <span class="ident">b</span>() <span class="op">*</span> <span class="ident">a</span>()
    }
}

<span class="doccomment">/// Implements the commutative ring trait for types provided.</span>
<span class="doccomment">/// # Examples</span>
<span class="doccomment">///</span>
<span class="doccomment">/// ```</span>
<span class="doccomment">/// # #[macro_use]</span>
<span class="doccomment">/// # extern crate alga;</span>
<span class="doccomment">/// # use alga::general::{AbstractMagma, AbstractRingCommutative, Additive, Multiplicative, TwoSidedInverse, Identity};</span>
<span class="doccomment">/// # fn main() {}</span>
<span class="doccomment">/// #[derive(PartialEq, Clone)]</span>
<span class="doccomment">/// struct Wrapper&lt;T&gt;(T);</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: AbstractMagma&lt;Additive&gt;&gt; AbstractMagma&lt;Additive&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn operate(&amp;self, right: &amp;Self) -&gt; Self {</span>
<span class="doccomment">///         Wrapper(self.0.operate(&amp;right.0))</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: TwoSidedInverse&lt;Additive&gt;&gt; TwoSidedInverse&lt;Additive&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn two_sided_inverse(&amp;self) -&gt; Self {</span>
<span class="doccomment">///         Wrapper(self.0.two_sided_inverse())</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: Identity&lt;Additive&gt;&gt; Identity&lt;Additive&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn identity() -&gt; Self {</span>
<span class="doccomment">///         Wrapper(T::identity())</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: AbstractMagma&lt;Multiplicative&gt;&gt; AbstractMagma&lt;Multiplicative&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn operate(&amp;self, right: &amp;Self) -&gt; Self {</span>
<span class="doccomment">///         Wrapper(self.0.operate(&amp;right.0))</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: Identity&lt;Multiplicative&gt;&gt; Identity&lt;Multiplicative&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn identity() -&gt; Self {</span>
<span class="doccomment">///         Wrapper(T::identity())</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl_ring!(&lt;Additive, Multiplicative&gt; for Wrapper&lt;T&gt; where T: AbstractRingCommutative);</span>
<span class="doccomment">/// ```</span>
<span class="macro">macro_rules</span><span class="macro">!</span> <span class="ident">impl_ring_commutative</span>(
    (<span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">A</span>:<span class="ident">ty</span>, <span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span>:<span class="ident">ty</span><span class="op">&gt;</span> <span class="kw">for</span> $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>:<span class="ident">tt</span>)<span class="op">+</span>) <span class="op">=</span><span class="op">&gt;</span> {
        <span class="macro">impl_ring</span><span class="macro">!</span>(<span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">A</span>, <span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span><span class="op">&gt;</span> <span class="kw">for</span> $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
        <span class="macro">impl_marker</span><span class="macro">!</span>(<span class="macro-nonterminal">$</span><span class="kw">crate</span>::<span class="macro-nonterminal">general</span>::<span class="ident">AbstractRingCommutative</span><span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">A</span>, <span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span><span class="op">&gt;</span>; $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
    }
);

<span class="doccomment">/// A field is a commutative ring, and an Abelian group under both operators.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// *A **field** is a set with two binary operations, an addition and a multiplication, which are both closed, commutative, associative</span>
<span class="doccomment">/// possess the divisibility property and an identity element, noted 0 and 1 respectively. Furthermore the multiplication is distributive</span>
<span class="doccomment">/// over the addition.*</span>
<span class="kw">pub</span> <span class="kw">trait</span> <span class="ident">AbstractField</span><span class="op">&lt;</span><span class="ident">A</span>: <span class="ident">Operator</span> <span class="op">=</span> <span class="ident">Additive</span>, <span class="ident">M</span>: <span class="ident">Operator</span> <span class="op">=</span> <span class="ident">Multiplicative</span><span class="op">&gt;</span>:
    <span class="ident">AbstractRingCommutative</span><span class="op">&lt;</span><span class="ident">A</span>, <span class="ident">M</span><span class="op">&gt;</span> <span class="op">+</span> <span class="ident">AbstractGroupAbelian</span><span class="op">&lt;</span><span class="ident">M</span><span class="op">&gt;</span>
{
}

<span class="doccomment">/// Implements the field trait for types provided.</span>
<span class="doccomment">/// # Examples</span>
<span class="doccomment">///</span>
<span class="doccomment">/// ```</span>
<span class="doccomment">/// # #[macro_use]</span>
<span class="doccomment">/// # extern crate alga;</span>
<span class="doccomment">/// # use alga::general::{AbstractMagma, AbstractField, Additive, Multiplicative, TwoSidedInverse, Identity};</span>
<span class="doccomment">/// # fn main() {}</span>
<span class="doccomment">/// #[derive(PartialEq, Clone)]</span>
<span class="doccomment">/// struct Wrapper&lt;T&gt;(T);</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: AbstractMagma&lt;Additive&gt;&gt; AbstractMagma&lt;Additive&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn operate(&amp;self, right: &amp;Self) -&gt; Self {</span>
<span class="doccomment">///         Wrapper(self.0.operate(&amp;right.0))</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: TwoSidedInverse&lt;Additive&gt;&gt; TwoSidedInverse&lt;Additive&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn two_sided_inverse(&amp;self) -&gt; Self {</span>
<span class="doccomment">///         Wrapper(self.0.two_sided_inverse())</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: Identity&lt;Additive&gt;&gt; Identity&lt;Additive&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn identity() -&gt; Self {</span>
<span class="doccomment">///         Wrapper(T::identity())</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: AbstractMagma&lt;Multiplicative&gt;&gt; AbstractMagma&lt;Multiplicative&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn operate(&amp;self, right: &amp;Self) -&gt; Self {</span>
<span class="doccomment">///         Wrapper(self.0.operate(&amp;right.0))</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">/// impl&lt;T: TwoSidedInverse&lt;Multiplicative&gt;&gt; TwoSidedInverse&lt;Multiplicative&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn two_sided_inverse(&amp;self) -&gt; Self {</span>
<span class="doccomment">///         Wrapper(self.0.two_sided_inverse())</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl&lt;T: Identity&lt;Multiplicative&gt;&gt; Identity&lt;Multiplicative&gt; for Wrapper&lt;T&gt; {</span>
<span class="doccomment">///     fn identity() -&gt; Self {</span>
<span class="doccomment">///         Wrapper(T::identity())</span>
<span class="doccomment">///     }</span>
<span class="doccomment">/// }</span>
<span class="doccomment">///</span>
<span class="doccomment">/// impl_field!(&lt;Additive, Multiplicative&gt; for Wrapper&lt;T&gt; where T: AbstractField);</span>
<span class="doccomment">/// ```</span>
<span class="macro">macro_rules</span><span class="macro">!</span> <span class="ident">impl_field</span>(
    (<span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">A</span>:<span class="ident">ty</span>, <span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span>:<span class="ident">ty</span><span class="op">&gt;</span> <span class="kw">for</span> $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>:<span class="ident">tt</span>)<span class="op">+</span>) <span class="op">=</span><span class="op">&gt;</span> {
        <span class="macro">impl_ring_commutative</span><span class="macro">!</span>(<span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">A</span>, <span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span><span class="op">&gt;</span> <span class="kw">for</span> $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
        <span class="macro">impl_marker</span><span class="macro">!</span>(<span class="macro-nonterminal">$</span><span class="kw">crate</span>::<span class="macro-nonterminal">general</span>::<span class="ident">AbstractQuasigroup</span><span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span><span class="op">&gt;</span>; $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
        <span class="macro">impl_marker</span><span class="macro">!</span>(<span class="macro-nonterminal">$</span><span class="kw">crate</span>::<span class="macro-nonterminal">general</span>::<span class="ident">AbstractLoop</span><span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span><span class="op">&gt;</span>; $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
        <span class="macro">impl_marker</span><span class="macro">!</span>(<span class="macro-nonterminal">$</span><span class="kw">crate</span>::<span class="macro-nonterminal">general</span>::<span class="ident">AbstractGroup</span><span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span><span class="op">&gt;</span>; $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
        <span class="macro">impl_marker</span><span class="macro">!</span>(<span class="macro-nonterminal">$</span><span class="kw">crate</span>::<span class="macro-nonterminal">general</span>::<span class="ident">AbstractGroupAbelian</span><span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span><span class="op">&gt;</span>; $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
        <span class="macro">impl_marker</span><span class="macro">!</span>(<span class="macro-nonterminal">$</span><span class="kw">crate</span>::<span class="macro-nonterminal">general</span>::<span class="ident">AbstractField</span><span class="op">&lt;</span><span class="macro-nonterminal">$</span><span class="macro-nonterminal">A</span>, <span class="macro-nonterminal">$</span><span class="macro-nonterminal">M</span><span class="op">&gt;</span>; $(<span class="macro-nonterminal">$</span><span class="macro-nonterminal">T</span>)<span class="op">+</span>);
    }
);

<span class="comment">/*
 *
 * Implementations.
 *
 */</span>
<span class="macro">impl_ring_commutative</span><span class="macro">!</span>(<span class="op">&lt;</span><span class="ident">Additive</span>, <span class="ident">Multiplicative</span><span class="op">&gt;</span> <span class="kw">for</span> <span class="ident">i8</span>; <span class="ident">i16</span>; <span class="ident">i32</span>; <span class="ident">i64</span>; <span class="ident">isize</span>);
<span class="macro">impl_field</span><span class="macro">!</span>(<span class="op">&lt;</span><span class="ident">Additive</span>, <span class="ident">Multiplicative</span><span class="op">&gt;</span> <span class="kw">for</span> <span class="ident">f32</span>; <span class="ident">f64</span>);
<span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">&quot;decimal&quot;</span>)]</span>
<span class="macro">impl_field</span><span class="macro">!</span>(<span class="op">&lt;</span><span class="ident">Additive</span>, <span class="ident">Multiplicative</span><span class="op">&gt;</span> <span class="kw">for</span> <span class="ident">d128</span>);

<span class="kw">impl</span><span class="op">&lt;</span><span class="ident">N</span>: <span class="ident">Num</span> <span class="op">+</span> <span class="ident">Clone</span> <span class="op">+</span> <span class="ident">ClosedNeg</span> <span class="op">+</span> <span class="ident">AbstractRing</span><span class="op">&gt;</span> <span class="ident">AbstractRing</span> <span class="kw">for</span> <span class="ident">Complex</span><span class="op">&lt;</span><span class="ident">N</span><span class="op">&gt;</span> {}
<span class="kw">impl</span><span class="op">&lt;</span><span class="ident">N</span>: <span class="ident">Num</span> <span class="op">+</span> <span class="ident">Clone</span> <span class="op">+</span> <span class="ident">ClosedNeg</span> <span class="op">+</span> <span class="ident">AbstractRingCommutative</span><span class="op">&gt;</span> <span class="ident">AbstractRingCommutative</span> <span class="kw">for</span> <span class="ident">Complex</span><span class="op">&lt;</span><span class="ident">N</span><span class="op">&gt;</span> {}
<span class="kw">impl</span><span class="op">&lt;</span><span class="ident">N</span>: <span class="ident">Num</span> <span class="op">+</span> <span class="ident">Clone</span> <span class="op">+</span> <span class="ident">ClosedNeg</span> <span class="op">+</span> <span class="ident">AbstractField</span><span class="op">&gt;</span> <span class="ident">AbstractField</span> <span class="kw">for</span> <span class="ident">Complex</span><span class="op">&lt;</span><span class="ident">N</span><span class="op">&gt;</span> {}
</pre></div>
</section><section id="search" class="content hidden"></section><section class="footer"></section><aside id="help" class="hidden"><div><h1 class="hidden">Help</h1><div class="shortcuts"><h2>Keyboard Shortcuts</h2><dl><dt><kbd>?</kbd></dt><dd>Show this help dialog</dd><dt><kbd>S</kbd></dt><dd>Focus the search field</dd><dt><kbd>↑</kbd></dt><dd>Move up in search results</dd><dt><kbd>↓</kbd></dt><dd>Move down in search results</dd><dt><kbd>↹</kbd></dt><dd>Switch tab</dd><dt><kbd>&#9166;</kbd></dt><dd>Go to active search result</dd><dt><kbd>+</kbd></dt><dd>Expand all sections</dd><dt><kbd>-</kbd></dt><dd>Collapse all sections</dd></dl></div><div class="infos"><h2>Search Tricks</h2><p>Prefix searches with a type followed by a colon (e.g., <code>fn:</code>) to restrict the search to a given type.</p><p>Accepted types are: <code>fn</code>, <code>mod</code>, <code>struct</code>, <code>enum</code>, <code>trait</code>, <code>type</code>, <code>macro</code>, and <code>const</code>.</p><p>Search functions by type signature (e.g., <code>vec -> usize</code> or <code>* -> vec</code>)</p><p>Search multiple things at once by splitting your query with comma (e.g., <code>str,u8</code> or <code>String,struct:Vec,test</code>)</p></div></div></aside><script>window.rootPath = "../../../";window.currentCrate = "alga";</script><script src="../../../aliases.js"></script><script src="../../../main.js"></script><script src="../../../source-script.js"></script><script src="../../../source-files.js"></script><script defer src="../../../search-index.js"></script></body></html>