1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
//! A concurrent work-stealing deque. //! //! This data structure is most commonly used in schedulers. The typical setup involves a number of //! threads where each thread has its own deque containing tasks. A thread may push tasks into its //! deque as well as pop tasks from it. Once it runs out of tasks, it may steal some from other //! threads to help complete tasks more quickly. Therefore, work-stealing deques supports three //! essential operations: *push*, *pop*, and *steal*. //! //! # Types of deques //! //! There are two types of deques, differing only in which order tasks get pushed and popped. The //! two task ordering strategies are: //! //! * First-in first-out (FIFO) //! * Last-in first-out (LIFO) //! //! A deque is a buffer with two ends, front and back. In a FIFO deque, tasks are pushed into the //! back, popped from the front, and stolen from the front. However, in a LIFO deque, tasks are //! popped from the back instead - that is the only difference. //! //! # Workers and stealers //! //! There are two functions that construct a deque: [`fifo`] and [`lifo`]. These functions return a //! [`Worker`] and a [`Stealer`]. The thread which owns the deque is usually called *worker*, while //! all other threads are *stealers*. //! //! [`Worker`] is able to push and pop tasks. It cannot be shared among multiple threads - only //! one thread owns it. //! //! [`Stealer`] can only steal tasks. It can be shared among multiple threads by reference or by //! cloning. Cloning a [`Stealer`] simply creates another one associated with the same deque. //! //! # Examples //! //! ``` //! use crossbeam_deque::{self as deque, Pop, Steal}; //! use std::thread; //! //! // Create a LIFO deque. //! let (w, s) = deque::lifo(); //! //! // Push several elements into the back. //! w.push(1); //! w.push(2); //! w.push(3); //! //! // This is a LIFO deque, which means an element is popped from the back. //! // If it was a FIFO deque, `w.pop()` would return `Some(1)`. //! assert_eq!(w.pop(), Pop::Data(3)); //! //! // Create a stealer thread. //! thread::spawn(move || { //! assert_eq!(s.steal(), Steal::Data(1)); //! assert_eq!(s.steal(), Steal::Data(2)); //! }).join().unwrap(); //! ``` //! //! [`Worker`]: struct.Worker.html //! [`Stealer`]: struct.Stealer.html //! [`fifo`]: fn.fifo.html //! [`lifo`]: fn.lifo.html #![warn(missing_docs)] #![warn(missing_debug_implementations)] extern crate crossbeam_epoch as epoch; extern crate crossbeam_utils as utils; use std::cell::Cell; use std::cmp; use std::fmt; use std::marker::PhantomData; use std::mem; use std::ptr; use std::sync::atomic::{self, AtomicIsize, Ordering}; use std::sync::Arc; use epoch::{Atomic, Owned}; use utils::CachePadded; /// Minimum buffer capacity for a deque. const MIN_CAP: usize = 32; /// Maximum number of additional elements that can be stolen in `steal_many`. const MAX_BATCH: usize = 128; /// If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets /// deallocated as soon as possible. const FLUSH_THRESHOLD_BYTES: usize = 1 << 10; /// Creates a work-stealing deque with the first-in first-out strategy. /// /// Elements are pushed into the back, popped from the front, and stolen from the front. In other /// words, the worker side behaves as a FIFO queue. /// /// # Examples /// /// ``` /// use crossbeam_deque::{self as deque, Pop, Steal}; /// /// let (w, s) = deque::fifo::<i32>(); /// w.push(1); /// w.push(2); /// w.push(3); /// /// assert_eq!(s.steal(), Steal::Data(1)); /// assert_eq!(w.pop(), Pop::Data(2)); /// assert_eq!(w.pop(), Pop::Data(3)); /// ``` pub fn fifo<T>() -> (Worker<T>, Stealer<T>) { let buffer = Buffer::alloc(MIN_CAP); let inner = Arc::new(CachePadded::new(Inner { front: AtomicIsize::new(0), back: AtomicIsize::new(0), buffer: Atomic::new(buffer), })); let w = Worker { inner: inner.clone(), cached_buffer: Cell::new(buffer), flavor: Flavor::Fifo, _marker: PhantomData, }; let s = Stealer { inner, flavor: Flavor::Fifo, }; (w, s) } /// Creates a work-stealing deque with the last-in first-out strategy. /// /// Elements are pushed into the back, popped from the back, and stolen from the front. In other /// words, the worker side behaves as a LIFO stack. /// /// # Examples /// /// ``` /// use crossbeam_deque::{self as deque, Pop, Steal}; /// /// let (w, s) = deque::lifo::<i32>(); /// w.push(1); /// w.push(2); /// w.push(3); /// /// assert_eq!(s.steal(), Steal::Data(1)); /// assert_eq!(w.pop(), Pop::Data(3)); /// assert_eq!(w.pop(), Pop::Data(2)); /// ``` pub fn lifo<T>() -> (Worker<T>, Stealer<T>) { let buffer = Buffer::alloc(MIN_CAP); let inner = Arc::new(CachePadded::new(Inner { front: AtomicIsize::new(0), back: AtomicIsize::new(0), buffer: Atomic::new(buffer), })); let w = Worker { inner: inner.clone(), cached_buffer: Cell::new(buffer), flavor: Flavor::Lifo, _marker: PhantomData, }; let s = Stealer { inner, flavor: Flavor::Lifo, }; (w, s) } /// A buffer that holds elements in a deque. /// /// This is just a pointer to the buffer and its length - dropping an instance of this struct will /// *not* deallocate the buffer. struct Buffer<T> { /// Pointer to the allocated memory. ptr: *mut T, /// Capacity of the buffer. Always a power of two. cap: usize, } unsafe impl<T> Send for Buffer<T> {} impl<T> Buffer<T> { /// Allocates a new buffer with the specified capacity. fn alloc(cap: usize) -> Self { debug_assert_eq!(cap, cap.next_power_of_two()); let mut v = Vec::with_capacity(cap); let ptr = v.as_mut_ptr(); mem::forget(v); Buffer { ptr, cap } } /// Deallocates the buffer. unsafe fn dealloc(self) { drop(Vec::from_raw_parts(self.ptr, 0, self.cap)); } /// Returns a pointer to the element at the specified `index`. unsafe fn at(&self, index: isize) -> *mut T { // `self.cap` is always a power of two. self.ptr.offset(index & (self.cap - 1) as isize) } /// Writes `value` into the specified `index`. /// /// Using this concurrently with another `read` or `write` is technically /// speaking UB due to data races. We should be using relaxed accesses, but /// that would cost too much performance. Hence, as a HACK, we use volatile /// accesses instead. Experimental evidence shows that this works. unsafe fn write(&self, index: isize, value: T) { ptr::write_volatile(self.at(index), value) } /// Reads a value from the specified `index`. /// /// Using this concurrently with a `write` is technically speaking UB due to /// data races. We should be using relaxed accesses, but that would cost /// too much performance. Hence, as a HACK, we use volatile accesses /// instead. Experimental evidence shows that this works. unsafe fn read(&self, index: isize) -> T { ptr::read_volatile(self.at(index)) } } impl<T> Clone for Buffer<T> { fn clone(&self) -> Buffer<T> { Buffer { ptr: self.ptr, cap: self.cap, } } } impl<T> Copy for Buffer<T> {} /// Possible outcomes of a pop operation. #[must_use] #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)] pub enum Pop<T> { /// The deque was empty at the time of popping. Empty, /// Some data has been successfully popped. Data(T), /// Lost the race for popping data to another concurrent steal operation. Try again. Retry, } /// Possible outcomes of a steal operation. #[must_use] #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)] pub enum Steal<T> { /// The deque was empty at the time of stealing. Empty, /// Some data has been successfully stolen. Data(T), /// Lost the race for stealing data to another concurrent steal or pop operation. Try again. Retry, } /// Internal data that is shared between the worker and stealers. /// /// The implementation is based on the following work: /// /// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev] /// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models. /// PPoPP 2013.][weak-mem] /// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++ /// atomics. OOPSLA 2013.][checker] /// /// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974 /// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524 /// [checker]: https://dl.acm.org/citation.cfm?id=2509514 struct Inner<T> { /// The front index. front: AtomicIsize, /// The back index. back: AtomicIsize, /// The underlying buffer. buffer: Atomic<Buffer<T>>, } impl<T> Drop for Inner<T> { fn drop(&mut self) { // Load the back index, front index, and buffer. let b = self.back.load(Ordering::Relaxed); let f = self.front.load(Ordering::Relaxed); unsafe { let buffer = self.buffer.load(Ordering::Relaxed, epoch::unprotected()); // Go through the buffer from front to back and drop all elements in the deque. let mut i = f; while i != b { ptr::drop_in_place(buffer.deref().at(i)); i = i.wrapping_add(1); } // Free the memory allocated by the buffer. buffer.into_owned().into_box().dealloc(); } } } /// The flavor of a deque: FIFO or LIFO. #[derive(Clone, Copy, Debug, Eq, PartialEq)] enum Flavor { /// The first-in first-out flavor. Fifo, /// The last-in first-out flavor. Lifo, } /// The worker side of a deque. /// /// Workers push elements into the back and pop elements depending on the strategy: /// /// * In FIFO deques, elements are popped from the front. /// * In LIFO deques, elements are popped from the back. /// /// A deque has only one worker. Workers are not intended to be shared among multiple threads. pub struct Worker<T> { /// A reference to the inner representation of the deque. inner: Arc<CachePadded<Inner<T>>>, /// A copy of `inner.buffer` for quick access. cached_buffer: Cell<Buffer<T>>, /// The flavor of the deque. flavor: Flavor, /// Indicates that the worker cannot be shared among threads. _marker: PhantomData<*mut ()>, // !Send + !Sync } unsafe impl<T: Send> Send for Worker<T> {} impl<T> Worker<T> { /// Resizes the internal buffer to the new capacity of `new_cap`. #[cold] unsafe fn resize(&self, new_cap: usize) { // Load the back index, front index, and buffer. let b = self.inner.back.load(Ordering::Relaxed); let f = self.inner.front.load(Ordering::Relaxed); let buffer = self.cached_buffer.get(); // Allocate a new buffer. let new = Buffer::alloc(new_cap); self.cached_buffer.set(new); // Copy data from the old buffer to the new one. let mut i = f; while i != b { ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1); i = i.wrapping_add(1); } let guard = &epoch::pin(); // Replace the old buffer with the new one. let old = self.inner .buffer .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard); // Destroy the old buffer later. guard.defer_unchecked(move || old.into_owned().into_box().dealloc()); // If the buffer is very large, then flush the thread-local garbage in order to deallocate // it as soon as possible. if mem::size_of::<T>() * new_cap >= FLUSH_THRESHOLD_BYTES { guard.flush(); } } /// Reserves enough capacity so that `reserve_cap` elements can be pushed without growing the /// buffer. fn reserve(&self, reserve_cap: usize) { if reserve_cap > 0 { // Compute the current length. let b = self.inner.back.load(Ordering::Relaxed); let f = self.inner.front.load(Ordering::SeqCst); let len = b.wrapping_sub(f) as usize; // The current capacity. let cap = self.cached_buffer.get().cap; // Is there enough capacity to push `reserve_cap` elements? if cap - len < reserve_cap { // Keep doubling the capacity as much as is needed. let mut new_cap = cap * 2; while new_cap - len < reserve_cap { new_cap *= 2; } // Resize the buffer. unsafe { self.resize(new_cap); } } } } /// Returns `true` if the deque is empty. /// /// ``` /// use crossbeam_deque as deque; /// /// let (w, _) = deque::lifo(); /// assert!(w.is_empty()); /// w.push(1); /// assert!(!w.is_empty()); /// ``` pub fn is_empty(&self) -> bool { let b = self.inner.back.load(Ordering::Relaxed); let f = self.inner.front.load(Ordering::SeqCst); b.wrapping_sub(f) <= 0 } /// Pushes an element into the back of the deque. /// /// # Examples /// /// ``` /// use crossbeam_deque as deque; /// /// let (w, _) = deque::lifo(); /// w.push(1); /// w.push(2); /// ``` pub fn push(&self, value: T) { // Load the back index, front index, and buffer. let b = self.inner.back.load(Ordering::Relaxed); let f = self.inner.front.load(Ordering::Acquire); let mut buffer = self.cached_buffer.get(); // Calculate the length of the deque. let len = b.wrapping_sub(f); // Is the deque full? if len >= buffer.cap as isize { // Yes. Grow the underlying buffer. unsafe { self.resize(2 * buffer.cap); } buffer = self.cached_buffer.get(); } // Write `value` into the slot. unsafe { buffer.write(b, value); } atomic::fence(Ordering::Release); // Increment the back index. // // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data // races because it doesn't understand fences. self.inner.back.store(b.wrapping_add(1), Ordering::Release); } /// Pops an element from the deque. /// /// Which end of the deque is used depends on the strategy: /// /// * If this is a FIFO deque, an element is popped from the front. /// * If this is a LIFO deque, an element is popped from the back. /// /// # Examples /// /// ``` /// use crossbeam_deque::{self as deque, Pop}; /// /// let (w, _) = deque::fifo(); /// w.push(1); /// w.push(2); /// /// assert_eq!(w.pop(), Pop::Data(1)); /// assert_eq!(w.pop(), Pop::Data(2)); /// assert_eq!(w.pop(), Pop::Empty); /// ``` pub fn pop(&self) -> Pop<T> { // Load the back and front index. let b = self.inner.back.load(Ordering::Relaxed); let f = self.inner.front.load(Ordering::Relaxed); // Calculate the length of the deque. let len = b.wrapping_sub(f); // Is the deque empty? if len <= 0 { return Pop::Empty; } match self.flavor { // Pop from the front of the deque. Flavor::Fifo => { // Try incrementing the front index to pop the value. if self .inner .front .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) .is_ok() { unsafe { // Read the popped value. let buffer = self.cached_buffer.get(); let data = buffer.read(f); // Shrink the buffer if `len - 1` is less than one fourth of the capacity. if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { self.resize(buffer.cap / 2); } return Pop::Data(data); } } Pop::Retry } // Pop from the back of the deque. Flavor::Lifo => { // Decrement the back index. let b = b.wrapping_sub(1); self.inner.back.store(b, Ordering::Relaxed); atomic::fence(Ordering::SeqCst); // Load the front index. let f = self.inner.front.load(Ordering::Relaxed); // Compute the length after the back index was decremented. let len = b.wrapping_sub(f); if len < 0 { // The deque is empty. Restore the back index to the original value. self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); Pop::Empty } else { // Read the value to be popped. let buffer = self.cached_buffer.get(); let mut value = unsafe { Some(buffer.read(b)) }; // Are we popping the last element from the deque? if len == 0 { // Try incrementing the front index. if self .inner .front .compare_exchange( f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed, ).is_err() { // Failed. We didn't pop anything. mem::forget(value.take()); } // Restore the back index to the original value. self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); } else { // Shrink the buffer if `len` is less than one fourth of the capacity. if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { unsafe { self.resize(buffer.cap / 2); } } } match value { None => Pop::Empty, Some(data) => Pop::Data(data), } } } } } } impl<T> fmt::Debug for Worker<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad("Worker { .. }") } } /// The stealer side of a deque. /// /// Stealers can only steal elements from the front of the deque. /// /// Stealers are cloneable so that they can be easily shared among multiple threads. pub struct Stealer<T> { /// A reference to the inner representation of the deque. inner: Arc<CachePadded<Inner<T>>>, /// The flavor of the deque. flavor: Flavor, } unsafe impl<T: Send> Send for Stealer<T> {} unsafe impl<T: Send> Sync for Stealer<T> {} impl<T> Stealer<T> { /// Returns `true` if the deque is empty. /// /// ``` /// use crossbeam_deque as deque; /// /// let (w, s) = deque::lifo(); /// assert!(s.is_empty()); /// w.push(1); /// assert!(!s.is_empty()); /// ``` pub fn is_empty(&self) -> bool { let f = self.inner.front.load(Ordering::Acquire); atomic::fence(Ordering::SeqCst); let b = self.inner.back.load(Ordering::Acquire); b.wrapping_sub(f) <= 0 } /// Steals an element from the front of the deque. /// /// # Examples /// /// ``` /// use crossbeam_deque::{self as deque, Steal}; /// /// let (w, s) = deque::lifo(); /// w.push(1); /// w.push(2); /// /// assert_eq!(s.steal(), Steal::Data(1)); /// assert_eq!(s.steal(), Steal::Data(2)); /// assert_eq!(s.steal(), Steal::Empty); /// ``` pub fn steal(&self) -> Steal<T> { // Load the front index. let f = self.inner.front.load(Ordering::Acquire); // A SeqCst fence is needed here. // // If the current thread is already pinned (reentrantly), we must manually issue the // fence. Otherwise, the following pinning will issue the fence anyway, so we don't // have to. if epoch::is_pinned() { atomic::fence(Ordering::SeqCst); } let guard = &epoch::pin(); // Load the back index. let b = self.inner.back.load(Ordering::Acquire); // Is the deque empty? if b.wrapping_sub(f) <= 0 { return Steal::Empty; } // Load the buffer and read the value at the front. let buffer = self.inner.buffer.load(Ordering::Acquire, guard); let value = unsafe { buffer.deref().read(f) }; // Try incrementing the front index to steal the value. if self .inner .front .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) .is_err() { // We didn't steal this value, forget it. mem::forget(value); return Steal::Retry; } // Return the stolen value. Steal::Data(value) } /// Steals elements from the front of the deque. /// /// If at least one element can be stolen, it will be returned. Additionally, some of the /// remaining elements will be stolen and pushed into the back of worker `dest` in order to /// balance the work among deques. There is no hard guarantee on exactly how many elements will /// be stolen, but it should be around half of the deque. /// /// # Examples /// /// ``` /// use crossbeam_deque::{self as deque, Steal}; /// /// let (w1, s1) = deque::fifo(); /// let (w2, s2) = deque::fifo(); /// /// w1.push(1); /// w1.push(2); /// w1.push(3); /// w1.push(4); /// /// assert_eq!(s1.steal_many(&w2), Steal::Data(1)); /// assert_eq!(s2.steal(), Steal::Data(2)); /// ``` pub fn steal_many(&self, dest: &Worker<T>) -> Steal<T> { // Load the front index. let mut f = self.inner.front.load(Ordering::Acquire); // A SeqCst fence is needed here. // // If the current thread is already pinned (reentrantly), we must manually issue the // fence. Otherwise, the following pinning will issue the fence anyway, so we don't // have to. if epoch::is_pinned() { atomic::fence(Ordering::SeqCst); } let guard = &epoch::pin(); // Load the back index. let b = self.inner.back.load(Ordering::Acquire); // Is the deque empty? let len = b.wrapping_sub(f); if len <= 0 { return Steal::Empty; } // Reserve capacity for the stolen additional elements. let additional = cmp::min((len as usize - 1) / 2, MAX_BATCH); dest.reserve(additional); let additional = additional as isize; // Get the destination buffer and back index. let dest_buffer = dest.cached_buffer.get(); let mut dest_b = dest.inner.back.load(Ordering::Relaxed); // Load the buffer and read the value at the front. let buffer = self.inner.buffer.load(Ordering::Acquire, guard); let value = unsafe { buffer.deref().read(f) }; match self.flavor { // Steal a batch of elements from the front at once. Flavor::Fifo => { // Copy the additional elements from the source to the destination buffer. for i in 0..additional { unsafe { let value = buffer.deref().read(f.wrapping_add(i + 1)); dest_buffer.write(dest_b.wrapping_add(i), value); } } // Try incrementing the front index to steal the batch. if self .inner .front .compare_exchange( f, f.wrapping_add(additional + 1), Ordering::SeqCst, Ordering::Relaxed, ).is_err() { // We didn't steal this value, forget it. mem::forget(value); return Steal::Retry; } atomic::fence(Ordering::Release); // Success! Update the back index in the destination deque. // // This ordering could be `Relaxed`, but then thread sanitizer would falsely report // data races because it doesn't understand fences. dest.inner .back .store(dest_b.wrapping_add(additional), Ordering::Release); // Return the first stolen value. Steal::Data(value) } // Steal a batch of elements from the front one by one. Flavor::Lifo => { // Try incrementing the front index to steal the value. if self .inner .front .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) .is_err() { // We didn't steal this value, forget it. mem::forget(value); return Steal::Retry; } // Move the front index one step forward. f = f.wrapping_add(1); // Repeat the same procedure for the additional steals. for _ in 0..additional { // We've already got the current front index. Now execute the fence to // synchronize with other threads. atomic::fence(Ordering::SeqCst); // Load the back index. let b = self.inner.back.load(Ordering::Acquire); // Is the deque empty? if b.wrapping_sub(f) <= 0 { break; } // Read the value at the front. let value = unsafe { buffer.deref().read(f) }; // Try incrementing the front index to steal the value. if self .inner .front .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) .is_err() { // We didn't steal this value, forget it and break from the loop. mem::forget(value); break; } // Write the stolen value into the destination buffer. unsafe { dest_buffer.write(dest_b, value); } // Move the source front index and the destination back index one step forward. f = f.wrapping_add(1); dest_b = dest_b.wrapping_add(1); atomic::fence(Ordering::Release); // Update the destination back index. // // This ordering could be `Relaxed`, but then thread sanitizer would falsely // report data races because it doesn't understand fences. dest.inner.back.store(dest_b, Ordering::Release); } // Return the first stolen value. Steal::Data(value) } } } } impl<T> Clone for Stealer<T> { fn clone(&self) -> Stealer<T> { Stealer { inner: self.inner.clone(), flavor: self.flavor, } } } impl<T> fmt::Debug for Stealer<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad("Stealer { .. }") } }