1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
//! The implementation is based on Dmitry Vyukov's bounded MPMC queue. //! //! Source: //! - http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue //! //! Copyright & License: //! - Copyright (c) 2010-2011 Dmitry Vyukov //! - Simplified BSD License and Apache License, Version 2.0 //! - http://www.1024cores.net/home/code-license use std::cell::UnsafeCell; use std::fmt; use std::marker::PhantomData; use std::mem; use std::ptr; use std::sync::atomic::{self, AtomicUsize, Ordering}; use crossbeam_utils::{Backoff, CachePadded}; use err::{PopError, PushError}; /// A slot in a queue. struct Slot<T> { /// The current stamp. /// /// If the stamp equals the tail, this node will be next written to. If it equals the head, /// this node will be next read from. stamp: AtomicUsize, /// The value in this slot. value: UnsafeCell<T>, } /// A bounded multi-producer multi-consumer queue. /// /// This queue allocates a fixed-capacity buffer on construction, which is used to store pushed /// elements. The queue cannot hold more elements that the buffer allows. Attempting to push an /// element into a full queue will fail. Having a buffer allocated upfront makes this queue a bit /// faster than [`SegQueue`]. /// /// [`SegQueue`]: struct.SegQueue.html /// /// # Examples /// /// ``` /// use crossbeam_queue::{ArrayQueue, PushError}; /// /// let q = ArrayQueue::new(2); /// /// assert_eq!(q.push('a'), Ok(())); /// assert_eq!(q.push('b'), Ok(())); /// assert_eq!(q.push('c'), Err(PushError('c'))); /// assert_eq!(q.pop(), Ok('a')); /// ``` pub struct ArrayQueue<T> { /// The head of the queue. /// /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a /// single `usize`. The lower bits represent the index, while the upper bits represent the lap. /// /// Elements are popped from the head of the queue. head: CachePadded<AtomicUsize>, /// The tail of the queue. /// /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a /// single `usize`. The lower bits represent the index, while the upper bits represent the lap. /// /// Elements are pushed into the tail of the queue. tail: CachePadded<AtomicUsize>, /// The buffer holding slots. buffer: *mut Slot<T>, /// The queue capacity. cap: usize, /// A stamp with the value of `{ lap: 1, index: 0 }`. one_lap: usize, /// Indicates that dropping an `ArrayQueue<T>` may drop elements of type `T`. _marker: PhantomData<T>, } unsafe impl<T: Send> Sync for ArrayQueue<T> {} unsafe impl<T: Send> Send for ArrayQueue<T> {} impl<T> ArrayQueue<T> { /// Creates a new bounded queue with the given capacity. /// /// # Panics /// /// Panics if the capacity is zero. /// /// # Examples /// /// ``` /// use crossbeam_queue::ArrayQueue; /// /// let q = ArrayQueue::<i32>::new(100); /// ``` pub fn new(cap: usize) -> ArrayQueue<T> { assert!(cap > 0, "capacity must be non-zero"); // Head is initialized to `{ lap: 0, index: 0 }`. // Tail is initialized to `{ lap: 0, index: 0 }`. let head = 0; let tail = 0; // Allocate a buffer of `cap` slots. let buffer = { let mut v = Vec::<Slot<T>>::with_capacity(cap); let ptr = v.as_mut_ptr(); mem::forget(v); ptr }; // Initialize stamps in the slots. for i in 0..cap { unsafe { // Set the stamp to `{ lap: 0, index: i }`. let slot = buffer.add(i); ptr::write(&mut (*slot).stamp, AtomicUsize::new(i)); } } // One lap is the smallest power of two greater than `cap`. let one_lap = (cap + 1).next_power_of_two(); ArrayQueue { buffer, cap, one_lap, head: CachePadded::new(AtomicUsize::new(head)), tail: CachePadded::new(AtomicUsize::new(tail)), _marker: PhantomData, } } /// Attempts to push an element into the queue. /// /// If the queue is full, the element is returned back as an error. /// /// # Examples /// /// ``` /// use crossbeam_queue::{ArrayQueue, PushError}; /// /// let q = ArrayQueue::new(1); /// /// assert_eq!(q.push(10), Ok(())); /// assert_eq!(q.push(20), Err(PushError(20))); /// ``` pub fn push(&self, value: T) -> Result<(), PushError<T>> { let backoff = Backoff::new(); let mut tail = self.tail.load(Ordering::Relaxed); loop { // Deconstruct the tail. let index = tail & (self.one_lap - 1); let lap = tail & !(self.one_lap - 1); // Inspect the corresponding slot. let slot = unsafe { &*self.buffer.add(index) }; let stamp = slot.stamp.load(Ordering::Acquire); // If the tail and the stamp match, we may attempt to push. if tail == stamp { let new_tail = if index + 1 < self.cap { // Same lap, incremented index. // Set to `{ lap: lap, index: index + 1 }`. tail + 1 } else { // One lap forward, index wraps around to zero. // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. lap.wrapping_add(self.one_lap) }; // Try moving the tail. match self .tail .compare_exchange_weak(tail, new_tail, Ordering::SeqCst, Ordering::Relaxed) { Ok(_) => { // Write the value into the slot and update the stamp. unsafe { slot.value.get().write(value); } slot.stamp.store(tail + 1, Ordering::Release); return Ok(()); } Err(t) => { tail = t; backoff.spin(); } } } else if stamp.wrapping_add(self.one_lap) == tail + 1 { atomic::fence(Ordering::SeqCst); let head = self.head.load(Ordering::Relaxed); // If the head lags one lap behind the tail as well... if head.wrapping_add(self.one_lap) == tail { // ...then the queue is full. return Err(PushError(value)); } backoff.spin(); tail = self.tail.load(Ordering::Relaxed); } else { // Snooze because we need to wait for the stamp to get updated. backoff.snooze(); tail = self.tail.load(Ordering::Relaxed); } } } /// Attempts to pop an element from the queue. /// /// If the queue is empty, an error is returned. /// /// # Examples /// /// ``` /// use crossbeam_queue::{ArrayQueue, PopError}; /// /// let q = ArrayQueue::new(1); /// assert_eq!(q.push(10), Ok(())); /// /// assert_eq!(q.pop(), Ok(10)); /// assert_eq!(q.pop(), Err(PopError)); /// ``` pub fn pop(&self) -> Result<T, PopError> { let backoff = Backoff::new(); let mut head = self.head.load(Ordering::Relaxed); loop { // Deconstruct the head. let index = head & (self.one_lap - 1); let lap = head & !(self.one_lap - 1); // Inspect the corresponding slot. let slot = unsafe { &*self.buffer.add(index) }; let stamp = slot.stamp.load(Ordering::Acquire); // If the the stamp is ahead of the head by 1, we may attempt to pop. if head + 1 == stamp { let new = if index + 1 < self.cap { // Same lap, incremented index. // Set to `{ lap: lap, index: index + 1 }`. head + 1 } else { // One lap forward, index wraps around to zero. // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. lap.wrapping_add(self.one_lap) }; // Try moving the head. match self .head .compare_exchange_weak(head, new, Ordering::SeqCst, Ordering::Relaxed) { Ok(_) => { // Read the value from the slot and update the stamp. let msg = unsafe { slot.value.get().read() }; slot.stamp.store(head.wrapping_add(self.one_lap), Ordering::Release); return Ok(msg); } Err(h) => { head = h; backoff.spin(); } } } else if stamp == head { atomic::fence(Ordering::SeqCst); let tail = self.tail.load(Ordering::Relaxed); // If the tail equals the head, that means the channel is empty. if tail == head { return Err(PopError); } backoff.spin(); head = self.head.load(Ordering::Relaxed); } else { // Snooze because we need to wait for the stamp to get updated. backoff.snooze(); head = self.head.load(Ordering::Relaxed); } } } /// Returns the capacity of the queue. /// /// # Examples /// /// ``` /// use crossbeam_queue::{ArrayQueue, PopError}; /// /// let q = ArrayQueue::<i32>::new(100); /// /// assert_eq!(q.capacity(), 100); /// ``` pub fn capacity(&self) -> usize { self.cap } /// Returns `true` if the queue is empty. /// /// # Examples /// /// ``` /// use crossbeam_queue::{ArrayQueue, PopError}; /// /// let q = ArrayQueue::new(100); /// /// assert!(q.is_empty()); /// q.push(1).unwrap(); /// assert!(!q.is_empty()); /// ``` pub fn is_empty(&self) -> bool { let head = self.head.load(Ordering::SeqCst); let tail = self.tail.load(Ordering::SeqCst); // Is the tail lagging one lap behind head? // Is the tail equal to the head? // // Note: If the head changes just before we load the tail, that means there was a moment // when the channel was not empty, so it is safe to just return `false`. tail == head } /// Returns `true` if the queue is full. /// /// # Examples /// /// ``` /// use crossbeam_queue::{ArrayQueue, PopError}; /// /// let q = ArrayQueue::new(1); /// /// assert!(!q.is_full()); /// q.push(1).unwrap(); /// assert!(q.is_full()); /// ``` pub fn is_full(&self) -> bool { let tail = self.tail.load(Ordering::SeqCst); let head = self.head.load(Ordering::SeqCst); // Is the head lagging one lap behind tail? // // Note: If the tail changes just before we load the head, that means there was a moment // when the queue was not full, so it is safe to just return `false`. head.wrapping_add(self.one_lap) == tail } /// Returns the number of elements in the queue. /// /// # Examples /// /// ``` /// use crossbeam_queue::{ArrayQueue, PopError}; /// /// let q = ArrayQueue::new(100); /// assert_eq!(q.len(), 0); /// /// q.push(10).unwrap(); /// assert_eq!(q.len(), 1); /// /// q.push(20).unwrap(); /// assert_eq!(q.len(), 2); /// ``` pub fn len(&self) -> usize { loop { // Load the tail, then load the head. let tail = self.tail.load(Ordering::SeqCst); let head = self.head.load(Ordering::SeqCst); // If the tail didn't change, we've got consistent values to work with. if self.tail.load(Ordering::SeqCst) == tail { let hix = head & (self.one_lap - 1); let tix = tail & (self.one_lap - 1); return if hix < tix { tix - hix } else if hix > tix { self.cap - hix + tix } else if tail == head { 0 } else { self.cap }; } } } } impl<T> Drop for ArrayQueue<T> { fn drop(&mut self) { // Get the index of the head. let hix = self.head.load(Ordering::Relaxed) & (self.one_lap - 1); // Loop over all slots that hold a message and drop them. for i in 0..self.len() { // Compute the index of the next slot holding a message. let index = if hix + i < self.cap { hix + i } else { hix + i - self.cap }; unsafe { self.buffer.add(index).drop_in_place(); } } // Finally, deallocate the buffer, but don't run any destructors. unsafe { Vec::from_raw_parts(self.buffer, 0, self.cap); } } } impl<T> fmt::Debug for ArrayQueue<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad("ArrayQueue { .. }") } }