use std::f32;
use num_traits::{NumCast, ToPrimitive, Zero};
use buffer::{ImageBuffer, Pixel};
use image::GenericImageView;
use math::utils::clamp;
use traits::{Enlargeable, Primitive};
#[derive(Clone, Copy, Debug)]
pub enum FilterType {
Nearest,
Triangle,
CatmullRom,
Gaussian,
Lanczos3,
}
pub struct Filter<'a> {
pub kernel: Box<Fn(f32) -> f32 + 'a>,
pub support: f32,
}
fn sinc(t: f32) -> f32 {
let a = t * f32::consts::PI;
if t == 0.0 {
1.0
} else {
a.sin() / a
}
}
fn lanczos(x: f32, t: f32) -> f32 {
if x.abs() < t {
sinc(x) * sinc(x / t)
} else {
0.0
}
}
fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 {
let a = x.abs();
let k = if a < 1.0 {
(12.0 - 9.0 * b - 6.0 * c) * a.powi(3) + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2)
+ (6.0 - 2.0 * b)
} else if a < 2.0 {
(-b - 6.0 * c) * a.powi(3) + (6.0 * b + 30.0 * c) * a.powi(2) + (-12.0 * b - 48.0 * c) * a
+ (8.0 * b + 24.0 * c)
} else {
0.0
};
k / 6.0
}
pub fn gaussian(x: f32, r: f32) -> f32 {
((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp()
}
pub fn lanczos3_kernel(x: f32) -> f32 {
lanczos(x, 3.0)
}
pub fn gaussian_kernel(x: f32) -> f32 {
gaussian(x, 0.5)
}
pub fn catmullrom_kernel(x: f32) -> f32 {
bc_cubic_spline(x, 0.0, 0.5)
}
pub fn triangle_kernel(x: f32) -> f32 {
if x.abs() < 1.0 {
1.0 - x.abs()
} else {
0.0
}
}
pub fn box_kernel(_x: f32) -> f32 {
1.0
}
fn horizontal_sample<I, P, S>(
image: &I,
new_width: u32,
filter: &mut Filter,
) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P> + 'static,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + 'static,
{
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(new_width, height);
let mut ws = Vec::new();
let max: f32 = NumCast::from(S::max_value()).unwrap();
let ratio = width as f32 / new_width as f32;
let sratio = if ratio < 1.0 { 1.0 } else { ratio };
let src_support = filter.support * sratio;
for outx in 0..new_width {
let inputx = (outx as f32 + 0.5) * ratio;
let left = (inputx - src_support).floor() as i64;
let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32;
let right = (inputx + src_support).ceil() as i64;
let right = clamp(
right,
<i64 as From<_>>::from(left) + 1,
<i64 as From<_>>::from(width),
) as u32;
let inputx = inputx - 0.5;
ws.clear();
let mut sum = 0.0;
for i in left..right {
let w = (filter.kernel)((i as f32 - inputx) / sratio);
ws.push(w);
sum += w;
}
for y in 0..height {
let mut t = (0.0, 0.0, 0.0, 0.0);
for (i, w) in ws.iter().enumerate() {
let p = image.get_pixel(left + i as u32, y);
let (k1, k2, k3, k4) = p.channels4();
let vec: (f32, f32, f32, f32) = (
NumCast::from(k1).unwrap(),
NumCast::from(k2).unwrap(),
NumCast::from(k3).unwrap(),
NumCast::from(k4).unwrap(),
);
t.0 += vec.0 * w;
t.1 += vec.1 * w;
t.2 += vec.2 * w;
t.3 += vec.3 * w;
}
let (t1, t2, t3, t4) = (t.0 / sum, t.1 / sum, t.2 / sum, t.3 / sum);
let t = Pixel::from_channels(
NumCast::from(clamp(t1, 0.0, max)).unwrap(),
NumCast::from(clamp(t2, 0.0, max)).unwrap(),
NumCast::from(clamp(t3, 0.0, max)).unwrap(),
NumCast::from(clamp(t4, 0.0, max)).unwrap(),
);
out.put_pixel(outx, y, t);
}
}
out
}
fn vertical_sample<I, P, S>(
image: &I,
new_height: u32,
filter: &mut Filter,
) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P> + 'static,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + 'static,
{
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(width, new_height);
let mut ws = Vec::new();
let max: f32 = NumCast::from(S::max_value()).unwrap();
let ratio = height as f32 / new_height as f32;
let sratio = if ratio < 1.0 { 1.0 } else { ratio };
let src_support = filter.support * sratio;
for outy in 0..new_height {
let inputy = (outy as f32 + 0.5) * ratio;
let left = (inputy - src_support).floor() as i64;
let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32;
let right = (inputy + src_support).ceil() as i64;
let right = clamp(
right,
<i64 as From<_>>::from(left) + 1,
<i64 as From<_>>::from(height),
) as u32;
let inputy = inputy - 0.5;
ws.clear();
let mut sum = 0.0;
for i in left..right {
let w = (filter.kernel)((i as f32 - inputy) / sratio);
ws.push(w);
sum += w;
}
for x in 0..width {
let mut t = (0.0, 0.0, 0.0, 0.0);
for (i, w) in ws.iter().enumerate() {
let p = image.get_pixel(x, left + i as u32);
let (k1, k2, k3, k4) = p.channels4();
let vec: (f32, f32, f32, f32) = (
NumCast::from(k1).unwrap(),
NumCast::from(k2).unwrap(),
NumCast::from(k3).unwrap(),
NumCast::from(k4).unwrap(),
);
t.0 += vec.0 * w;
t.1 += vec.1 * w;
t.2 += vec.2 * w;
t.3 += vec.3 * w;
}
let (t1, t2, t3, t4) = (t.0 / sum, t.1 / sum, t.2 / sum, t.3 / sum);
let t = Pixel::from_channels(
NumCast::from(clamp(t1, 0.0, max)).unwrap(),
NumCast::from(clamp(t2, 0.0, max)).unwrap(),
NumCast::from(clamp(t3, 0.0, max)).unwrap(),
NumCast::from(clamp(t4, 0.0, max)).unwrap(),
);
out.put_pixel(x, outy, t);
}
}
out
}
struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger);
impl<S: Primitive + Enlargeable> ThumbnailSum<S> {
fn zeroed() -> Self {
ThumbnailSum(S::Larger::zero(), S::Larger::zero(), S::Larger::zero(), S::Larger::zero())
}
fn sample_val(val: S) -> S::Larger {
<S::Larger as NumCast>::from(val).unwrap()
}
fn add_pixel<P: Pixel<Subpixel=S>>(&mut self, pixel: P) {
let pixel = pixel.channels4();
self.0 += Self::sample_val(pixel.0);
self.1 += Self::sample_val(pixel.1);
self.2 += Self::sample_val(pixel.2);
self.3 += Self::sample_val(pixel.3);
}
}
pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + Enlargeable + 'static,
{
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(new_width, new_height);
let x_ratio = width as f32 / new_width as f32;
let y_ratio = height as f32 / new_height as f32;
for outy in 0..new_height {
let bottomf = outy as f32 * y_ratio;
let topf = bottomf + y_ratio;
let bottom = clamp(
bottomf.ceil() as u32,
0,
height - 1,
);
let top = clamp(
topf.ceil() as u32,
bottom,
height,
);
for outx in 0..new_width {
let leftf = outx as f32 * x_ratio;
let rightf = leftf + x_ratio;
let left = clamp(
leftf.ceil() as u32,
0,
width - 1,
);
let right = clamp(
rightf.ceil() as u32,
left,
width,
);
let avg = if bottom != top && left != right {
thumbnail_sample_block(image, left, right, bottom, top)
} else if bottom != top {
debug_assert!(left > 0 && right > 0,
"First output column must have corresponding pixels");
let fraction_horizontal = (leftf.fract() + rightf.fract())/2.;
thumbnail_sample_fraction_horizontal(image, right - 1, fraction_horizontal, bottom, top)
} else if left != right {
debug_assert!(bottom > 0 && top > 0,
"First output row must have corresponding pixels");
let fraction_vertical = (topf.fract() + bottomf.fract())/2.;
thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical)
} else {
let fraction_horizontal = (topf.fract() + bottomf.fract())/2.;
let fraction_vertical= (leftf.fract() + rightf.fract())/2.;
thumbnail_sample_fraction_both(image, right - 1, fraction_horizontal, top - 1, fraction_vertical)
};
let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3);
out.put_pixel(outx, outy, pixel);
}
}
out
}
fn thumbnail_sample_block<I, P, S>(
image: &I,
left: u32,
right: u32,
bottom: u32,
top: u32,
) -> (S, S, S, S)
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S>,
S: Primitive + Enlargeable,
{
let mut sum = ThumbnailSum::zeroed();
for y in bottom..top {
for x in left..right {
let k = image.get_pixel(x, y);
sum.add_pixel(k);
}
}
let n = <S::Larger as NumCast>::from(
(right - left) * (top - bottom)).unwrap();
let round = <S::Larger as NumCast>::from(
n / NumCast::from(2).unwrap()).unwrap();
(
S::clamp_from((sum.0 + round)/n),
S::clamp_from((sum.1 + round)/n),
S::clamp_from((sum.2 + round)/n),
S::clamp_from((sum.3 + round)/n),
)
}
fn thumbnail_sample_fraction_horizontal<I, P, S>(
image: &I,
left: u32,
fraction_horizontal: f32,
bottom: u32,
top: u32,
) -> (S, S, S, S)
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S>,
S: Primitive + Enlargeable,
{
let fract = fraction_horizontal;
let mut sum_left = ThumbnailSum::zeroed();
let mut sum_right = ThumbnailSum::zeroed();
for x in bottom..top {
let k_left = image.get_pixel(left, x);
sum_left.add_pixel(k_left);
let k_right = image.get_pixel(left + 1, x);
sum_right.add_pixel(k_right);
}
let fact_right = fract /((top - bottom) as f32);
let fact_left = (1. - fract)/((top - bottom) as f32);
let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger|
<S as NumCast>::from(
fact_left * leftv.to_f32().unwrap() +
fact_right * rightv.to_f32().unwrap()
).expect("Average sample value should fit into sample type");
(
mix_left_and_right(sum_left.0, sum_right.0),
mix_left_and_right(sum_left.1, sum_right.1),
mix_left_and_right(sum_left.2, sum_right.2),
mix_left_and_right(sum_left.3, sum_right.3),
)
}
fn thumbnail_sample_fraction_vertical<I, P, S>(
image: &I,
left: u32,
right: u32,
bottom: u32,
fraction_vertical: f32,
) -> (S, S, S, S)
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S>,
S: Primitive + Enlargeable,
{
let fract = fraction_vertical;
let mut sum_bot = ThumbnailSum::zeroed();
let mut sum_top = ThumbnailSum::zeroed();
for x in left..right {
let k_bot = image.get_pixel(x, bottom);
sum_bot.add_pixel(k_bot);
let k_top = image.get_pixel(x, bottom + 1);
sum_top.add_pixel(k_top);
}
let fact_top = fract /((right - left) as f32);
let fact_bot = (1. - fract)/((right - left) as f32);
let mix_bot_and_top = |botv: S::Larger, topv: S::Larger|
<S as NumCast>::from(
fact_bot * botv.to_f32().unwrap() +
fact_top * topv.to_f32().unwrap()
).expect("Average sample value should fit into sample type");
(
mix_bot_and_top(sum_bot.0, sum_top.0),
mix_bot_and_top(sum_bot.1, sum_top.1),
mix_bot_and_top(sum_bot.2, sum_top.2),
mix_bot_and_top(sum_bot.3, sum_top.3),
)
}
fn thumbnail_sample_fraction_both<I, P, S>(
image: &I,
left: u32,
fraction_vertical: f32,
bottom: u32,
fraction_horizontal: f32,
) -> (S, S, S, S)
where
I: GenericImageView<Pixel = P>,
P: Pixel<Subpixel = S>,
S: Primitive + Enlargeable,
{
let k_bl = image.get_pixel(left, bottom ).channels4();
let k_tl = image.get_pixel(left, bottom + 1).channels4();
let k_br = image.get_pixel(left + 1, bottom ).channels4();
let k_tr = image.get_pixel(left + 1, bottom + 1).channels4();
let frac_v = fraction_vertical;
let frac_h = fraction_horizontal;
let fact_tr = frac_v * frac_h;
let fact_tl = frac_v * (1. - frac_h);
let fact_br = (1. - frac_v) * frac_h;
let fact_bl = (1. - frac_v) * (1. - frac_h);
let mix = |br: S, tr: S, bl: S, tl: S|
<S as NumCast>::from(
fact_br * br.to_f32().unwrap() +
fact_tr * tr.to_f32().unwrap() +
fact_bl * bl.to_f32().unwrap() +
fact_tl * tl.to_f32().unwrap()
).expect("Average sample value should fit into sample type");
(
mix(k_br.0, k_tr.0, k_bl.0, k_tl.0),
mix(k_br.1, k_tr.1, k_bl.1, k_tl.1),
mix(k_br.2, k_tr.2, k_bl.2, k_tl.2),
mix(k_br.3, k_tr.3, k_bl.3, k_tl.3),
)
}
pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P> + 'static,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + 'static,
{
let taps: &[(isize, isize)] = &[
(-1, -1),
(0, -1),
(1, -1),
(-1, 0),
(0, 0),
(1, 0),
(-1, 1),
(0, 1),
(1, 1),
];
let (width, height) = image.dimensions();
let mut out = ImageBuffer::new(width, height);
let max = S::max_value();
let max: f32 = NumCast::from(max).unwrap();
let sum = match kernel.iter().fold(0.0, |s, &item| s + item) {
x if x == 0.0 => 1.0,
sum => sum,
};
let sum = (sum, sum, sum, sum);
for y in 1..height - 1 {
for x in 1..width - 1 {
let mut t = (0.0, 0.0, 0.0, 0.0);
for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) {
let k = (k, k, k, k);
let x0 = x as isize + a;
let y0 = y as isize + b;
let p = image.get_pixel(x0 as u32, y0 as u32);
let (k1, k2, k3, k4) = p.channels4();
let vec: (f32, f32, f32, f32) = (
NumCast::from(k1).unwrap(),
NumCast::from(k2).unwrap(),
NumCast::from(k3).unwrap(),
NumCast::from(k4).unwrap(),
);
t.0 += vec.0 * k.0;
t.1 += vec.1 * k.1;
t.2 += vec.2 * k.2;
t.3 += vec.3 * k.3;
}
let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3);
let t = Pixel::from_channels(
NumCast::from(clamp(t1, 0.0, max)).unwrap(),
NumCast::from(clamp(t2, 0.0, max)).unwrap(),
NumCast::from(clamp(t3, 0.0, max)).unwrap(),
NumCast::from(clamp(t4, 0.0, max)).unwrap(),
);
out.put_pixel(x, y, t);
}
}
out
}
pub fn resize<I: GenericImageView + 'static>(
image: &I,
nwidth: u32,
nheight: u32,
filter: FilterType,
) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
where
I::Pixel: 'static,
<I::Pixel as Pixel>::Subpixel: 'static,
{
let mut method = match filter {
FilterType::Nearest => Filter {
kernel: Box::new(box_kernel),
support: 0.0,
},
FilterType::Triangle => Filter {
kernel: Box::new(triangle_kernel),
support: 1.0,
},
FilterType::CatmullRom => Filter {
kernel: Box::new(catmullrom_kernel),
support: 2.0,
},
FilterType::Gaussian => Filter {
kernel: Box::new(gaussian_kernel),
support: 3.0,
},
FilterType::Lanczos3 => Filter {
kernel: Box::new(lanczos3_kernel),
support: 3.0,
},
};
let tmp = vertical_sample(image, nheight, &mut method);
horizontal_sample(&tmp, nwidth, &mut method)
}
pub fn blur<I: GenericImageView + 'static>(
image: &I,
sigma: f32,
) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
where
I::Pixel: 'static,
<I::Pixel as Pixel>::Subpixel: 'static,
{
let sigma = if sigma < 0.0 { 1.0 } else { sigma };
let mut method = Filter {
kernel: Box::new(|x| gaussian(x, sigma)),
support: 2.0 * sigma,
};
let (width, height) = image.dimensions();
let tmp = vertical_sample(image, height, &mut method);
horizontal_sample(&tmp, width, &mut method)
}
pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>>
where
I: GenericImageView<Pixel = P> + 'static,
P: Pixel<Subpixel = S> + 'static,
S: Primitive + 'static,
{
let mut tmp = blur(image, sigma);
let max = S::max_value();
let max: i32 = NumCast::from(max).unwrap();
let (width, height) = image.dimensions();
for y in 0..height {
for x in 0..width {
let a = image.get_pixel(x, y);
let b = tmp.get_pixel_mut(x, y);
let p = a.map2(b, |c, d| {
let ic: i32 = NumCast::from(c).unwrap();
let id: i32 = NumCast::from(d).unwrap();
let diff = (ic - id).abs();
if diff > threshold {
let e = clamp(ic + diff, 0, max);
NumCast::from(e).unwrap()
} else {
c
}
});
*b = p;
}
}
tmp
}
#[cfg(test)]
mod tests {
use super::{resize, FilterType};
use buffer::{ImageBuffer, RgbImage};
#[cfg(feature = "benchmarks")]
use test;
#[bench]
#[cfg(all(feature = "benchmarks", feature = "png_codec"))]
fn bench_resize(b: &mut test::Bencher) {
use std::path::Path;
let img = ::open(&Path::new("./examples/fractal.png")).unwrap();
b.iter(|| {
test::black_box(resize(&img, 200, 200, ::Nearest));
});
b.bytes = 800 * 800 * 3 + 200 * 200 * 3;
}
#[test]
fn test_issue_186() {
let img: RgbImage = ImageBuffer::new(100, 100);
let _ = resize(&img, 50, 50, FilterType::Lanczos3);
}
#[bench]
#[cfg(all(feature = "benchmarks", feature = "tiff"))]
fn bench_thumbnail(b: &mut test::Bencher) {
let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/lenna.tiff");
let image = ::open(path).unwrap();
b.iter(|| {
test::black_box(image.thumbnail(256, 256));
});
b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
}
#[bench]
#[cfg(all(feature = "benchmarks", feature = "tiff"))]
fn bench_thumbnail_upsize(b: &mut test::Bencher) {
let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/lenna.tiff");
let image = ::open(path).unwrap().thumbnail(256, 256);
b.iter(|| {
test::black_box(image.thumbnail(512, 512));
});
b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
}
#[bench]
#[cfg(all(feature = "benchmarks", feature = "tiff"))]
fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) {
let path = concat!(env!("CARGO_MANIFEST_DIR"), "/tests/images/tiff/testsuite/lenna.tiff");
let image = ::open(path).unwrap().thumbnail(193, 193);
b.iter(|| {
test::black_box(image.thumbnail(256, 256));
});
b.bytes = 193 * 193 * 4 + 256 * 256 * 4;
}
}