1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2.c */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== * */ /* atan2(y,x) * Method : * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). * 2. Reduce x to positive by (if x and y are unexceptional): * ARG (x+iy) = arctan(y/x) ... if x > 0, * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, * * Special cases: * * ATAN2((anything), NaN ) is NaN; * ATAN2(NAN , (anything) ) is NaN; * ATAN2(+-0, +(anything but NaN)) is +-0 ; * ATAN2(+-0, -(anything but NaN)) is +-pi ; * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; * ATAN2(+-INF,+INF ) is +-pi/4 ; * ATAN2(+-INF,-INF ) is +-3pi/4; * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ use super::atan; use super::fabs; const PI: f64 = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */ const PI_LO: f64 = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ /// Arctangent of y/x (f64) /// /// Computes the inverse tangent (arc tangent) of `y/x`. /// Produces the correct result even for angles near pi/2 or -pi/2 (that is, when `x` is near 0). /// Returns a value in radians, in the range of -pi to pi. #[inline] #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn atan2(y: f64, x: f64) -> f64 { if x.is_nan() || y.is_nan() { return x + y; } let mut ix = (x.to_bits() >> 32) as u32; let lx = x.to_bits() as u32; let mut iy = (y.to_bits() >> 32) as u32; let ly = y.to_bits() as u32; if ((ix.wrapping_sub(0x3ff00000)) | lx) == 0 { /* x = 1.0 */ return atan(y); } let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */ ix &= 0x7fffffff; iy &= 0x7fffffff; /* when y = 0 */ if (iy | ly) == 0 { return match m { 0 | 1 => y, /* atan(+-0,+anything)=+-0 */ 2 => PI, /* atan(+0,-anything) = PI */ _ => -PI, /* atan(-0,-anything) =-PI */ }; } /* when x = 0 */ if (ix | lx) == 0 { return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 }; } /* when x is INF */ if ix == 0x7ff00000 { if iy == 0x7ff00000 { return match m { 0 => PI / 4.0, /* atan(+INF,+INF) */ 1 => -PI / 4.0, /* atan(-INF,+INF) */ 2 => 3.0 * PI / 4.0, /* atan(+INF,-INF) */ _ => -3.0 * PI / 4.0, /* atan(-INF,-INF) */ }; } else { return match m { 0 => 0.0, /* atan(+...,+INF) */ 1 => -0.0, /* atan(-...,+INF) */ 2 => PI, /* atan(+...,-INF) */ _ => -PI, /* atan(-...,-INF) */ }; } } /* |y/x| > 0x1p64 */ if ix.wrapping_add(64 << 20) < iy || iy == 0x7ff00000 { return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 }; } /* z = atan(|y/x|) without spurious underflow */ let z = if (m & 2 != 0) && iy.wrapping_add(64 << 20) < ix { /* |y/x| < 0x1p-64, x<0 */ 0.0 } else { atan(fabs(y / x)) }; match m { 0 => z, /* atan(+,+) */ 1 => -z, /* atan(-,+) */ 2 => PI - (z - PI_LO), /* atan(+,-) */ _ => (z - PI_LO) - PI, /* atan(-,-) */ } } #[test] fn sanity_check() { assert_eq!(atan2(0.0, 1.0), 0.0); assert_eq!(atan2(0.0, -1.0), PI); assert_eq!(atan2(-0.0, -1.0), -PI); assert_eq!(atan2(3.0, 2.0), atan(3.0 / 2.0)); assert_eq!(atan2(2.0, -1.0), atan(2.0 / -1.0) + PI); assert_eq!(atan2(-2.0, -1.0), atan(-2.0 / -1.0) - PI); }