1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */ /* * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. * Debugged and optimized by Bruce D. Evans. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* cbrtf(x) * Return cube root of x */ use core::f32; const B1: u32 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */ const B2: u32 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */ /// Cube root (f32) /// /// Computes the cube root of the argument. #[inline] #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn cbrtf(x: f32) -> f32 { let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24 let mut r: f64; let mut t: f64; let mut ui: u32 = x.to_bits(); let mut hx: u32 = ui & 0x7fffffff; if hx >= 0x7f800000 { /* cbrt(NaN,INF) is itself */ return x + x; } /* rough cbrt to 5 bits */ if hx < 0x00800000 { /* zero or subnormal? */ if hx == 0 { return x; /* cbrt(+-0) is itself */ } ui = (x * x1p24).to_bits(); hx = ui & 0x7fffffff; hx = hx / 3 + B2; } else { hx = hx / 3 + B1; } ui &= 0x80000000; ui |= hx; /* * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In * double precision so that its terms can be arranged for efficiency * without causing overflow or underflow. */ t = f32::from_bits(ui) as f64; r = t * t * t; t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r); /* * Second step Newton iteration to 47 bits. In double precision for * efficiency and accuracy. */ r = t * t * t; t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r); /* rounding to 24 bits is perfect in round-to-nearest mode */ t as f32 }