<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source to the Rust file `/home/mrh/.cargo/registry/src/github.com-1ecc6299db9ec823/nalgebra-0.18.0/src/geometry/quaternion.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>quaternion.rs.html -- source</title><link rel="stylesheet" type="text/css" href="../../../normalize.css"><link rel="stylesheet" type="text/css" href="../../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" type="text/css" href="../../../dark.css"><link rel="stylesheet" type="text/css" href="../../../light.css" id="themeStyle"><script src="../../../storage.js"></script><noscript><link rel="stylesheet" href="../../../noscript.css"></noscript><link rel="shortcut icon" href="http://nalgebra.org/img/favicon.ico"><style type="text/css">#crate-search{background-image:url("../../../down-arrow.svg");}</style></head><body class="rustdoc source"><!--[if lte IE 8]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><div class="sidebar-menu">☰</div><a href='../../../nalgebra/index.html'><div class='logo-container'><img src='../../../rust-logo.png' alt='logo'></div></a></nav><div class="theme-picker"><button id="theme-picker" aria-label="Pick another theme!"><img src="../../../brush.svg" width="18" alt="Pick another theme!"></button><div id="theme-choices"></div></div><script src="../../../theme.js"></script><nav class="sub"><form class="search-form js-only"><div class="search-container"><div><select id="crate-search"><option value="All crates">All crates</option></select><input class="search-input" name="search" autocomplete="off" spellcheck="false" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"></div><a id="settings-menu" href="../../../settings.html"><img src="../../../wheel.svg" width="18" alt="Change settings"></a></div></form></nav><section id="main" class="content"><pre class="line-numbers"><span id="1"> 1</span> <span id="2"> 2</span> <span id="3"> 3</span> <span id="4"> 4</span> <span id="5"> 5</span> <span id="6"> 6</span> <span id="7"> 7</span> <span id="8"> 8</span> <span id="9"> 9</span> <span id="10"> 10</span> <span id="11"> 11</span> <span id="12"> 12</span> <span id="13"> 13</span> <span id="14"> 14</span> <span id="15"> 15</span> <span id="16"> 16</span> <span id="17"> 17</span> <span id="18"> 18</span> <span id="19"> 19</span> <span id="20"> 20</span> <span id="21"> 21</span> <span id="22"> 22</span> <span id="23"> 23</span> <span id="24"> 24</span> <span id="25"> 25</span> <span id="26"> 26</span> <span id="27"> 27</span> <span id="28"> 28</span> <span id="29"> 29</span> <span id="30"> 30</span> <span id="31"> 31</span> <span id="32"> 32</span> <span id="33"> 33</span> <span id="34"> 34</span> <span id="35"> 35</span> <span id="36"> 36</span> <span id="37"> 37</span> <span id="38"> 38</span> <span id="39"> 39</span> <span id="40"> 40</span> <span id="41"> 41</span> <span id="42"> 42</span> <span id="43"> 43</span> <span id="44"> 44</span> <span id="45"> 45</span> <span id="46"> 46</span> <span id="47"> 47</span> <span id="48"> 48</span> <span id="49"> 49</span> <span id="50"> 50</span> <span id="51"> 51</span> <span id="52"> 52</span> <span id="53"> 53</span> <span id="54"> 54</span> <span id="55"> 55</span> <span id="56"> 56</span> <span id="57"> 57</span> <span id="58"> 58</span> <span id="59"> 59</span> <span id="60"> 60</span> <span id="61"> 61</span> <span id="62"> 62</span> <span id="63"> 63</span> <span id="64"> 64</span> <span id="65"> 65</span> <span id="66"> 66</span> <span id="67"> 67</span> <span id="68"> 68</span> <span id="69"> 69</span> <span id="70"> 70</span> <span id="71"> 71</span> <span id="72"> 72</span> <span id="73"> 73</span> <span id="74"> 74</span> <span id="75"> 75</span> <span id="76"> 76</span> <span id="77"> 77</span> <span id="78"> 78</span> <span id="79"> 79</span> <span id="80"> 80</span> <span id="81"> 81</span> <span id="82"> 82</span> <span id="83"> 83</span> <span id="84"> 84</span> <span id="85"> 85</span> <span id="86"> 86</span> <span id="87"> 87</span> <span id="88"> 88</span> <span id="89"> 89</span> <span id="90"> 90</span> <span id="91"> 91</span> <span id="92"> 92</span> <span id="93"> 93</span> <span id="94"> 94</span> <span id="95"> 95</span> <span id="96"> 96</span> <span id="97"> 97</span> <span id="98"> 98</span> <span id="99"> 99</span> <span id="100"> 100</span> <span id="101"> 101</span> <span id="102"> 102</span> <span id="103"> 103</span> <span id="104"> 104</span> <span id="105"> 105</span> <span id="106"> 106</span> <span id="107"> 107</span> <span id="108"> 108</span> <span id="109"> 109</span> <span id="110"> 110</span> <span id="111"> 111</span> <span id="112"> 112</span> <span id="113"> 113</span> <span id="114"> 114</span> <span id="115"> 115</span> <span id="116"> 116</span> <span id="117"> 117</span> <span id="118"> 118</span> <span id="119"> 119</span> <span id="120"> 120</span> <span id="121"> 121</span> <span id="122"> 122</span> <span id="123"> 123</span> <span id="124"> 124</span> <span id="125"> 125</span> <span id="126"> 126</span> <span id="127"> 127</span> <span id="128"> 128</span> <span id="129"> 129</span> <span id="130"> 130</span> <span id="131"> 131</span> <span id="132"> 132</span> <span id="133"> 133</span> <span id="134"> 134</span> <span id="135"> 135</span> <span id="136"> 136</span> <span id="137"> 137</span> <span id="138"> 138</span> <span id="139"> 139</span> <span id="140"> 140</span> <span id="141"> 141</span> <span id="142"> 142</span> <span id="143"> 143</span> <span id="144"> 144</span> <span id="145"> 145</span> <span id="146"> 146</span> <span id="147"> 147</span> <span id="148"> 148</span> <span id="149"> 149</span> <span id="150"> 150</span> <span id="151"> 151</span> <span id="152"> 152</span> <span id="153"> 153</span> <span id="154"> 154</span> <span id="155"> 155</span> <span id="156"> 156</span> <span id="157"> 157</span> <span id="158"> 158</span> <span id="159"> 159</span> <span id="160"> 160</span> <span id="161"> 161</span> <span id="162"> 162</span> <span id="163"> 163</span> <span id="164"> 164</span> <span id="165"> 165</span> <span id="166"> 166</span> <span id="167"> 167</span> <span id="168"> 168</span> <span id="169"> 169</span> <span id="170"> 170</span> <span id="171"> 171</span> <span id="172"> 172</span> <span id="173"> 173</span> <span id="174"> 174</span> <span id="175"> 175</span> <span id="176"> 176</span> <span id="177"> 177</span> <span id="178"> 178</span> <span id="179"> 179</span> <span id="180"> 180</span> <span id="181"> 181</span> <span id="182"> 182</span> <span id="183"> 183</span> <span id="184"> 184</span> <span id="185"> 185</span> <span id="186"> 186</span> <span id="187"> 187</span> <span id="188"> 188</span> <span id="189"> 189</span> <span id="190"> 190</span> <span id="191"> 191</span> <span id="192"> 192</span> <span id="193"> 193</span> <span id="194"> 194</span> <span id="195"> 195</span> <span id="196"> 196</span> <span id="197"> 197</span> <span id="198"> 198</span> <span id="199"> 199</span> <span id="200"> 200</span> <span id="201"> 201</span> <span id="202"> 202</span> <span id="203"> 203</span> <span id="204"> 204</span> <span id="205"> 205</span> <span id="206"> 206</span> <span id="207"> 207</span> <span id="208"> 208</span> <span id="209"> 209</span> <span id="210"> 210</span> <span id="211"> 211</span> <span id="212"> 212</span> <span id="213"> 213</span> <span id="214"> 214</span> <span id="215"> 215</span> <span id="216"> 216</span> <span id="217"> 217</span> <span id="218"> 218</span> <span id="219"> 219</span> <span id="220"> 220</span> <span id="221"> 221</span> <span id="222"> 222</span> <span id="223"> 223</span> <span id="224"> 224</span> <span id="225"> 225</span> <span id="226"> 226</span> <span id="227"> 227</span> <span id="228"> 228</span> <span id="229"> 229</span> <span id="230"> 230</span> <span id="231"> 231</span> <span id="232"> 232</span> <span id="233"> 233</span> <span id="234"> 234</span> <span id="235"> 235</span> <span id="236"> 236</span> <span id="237"> 237</span> <span id="238"> 238</span> <span id="239"> 239</span> <span id="240"> 240</span> <span id="241"> 241</span> <span id="242"> 242</span> <span id="243"> 243</span> <span id="244"> 244</span> <span id="245"> 245</span> <span id="246"> 246</span> <span id="247"> 247</span> <span id="248"> 248</span> <span id="249"> 249</span> <span id="250"> 250</span> <span id="251"> 251</span> <span id="252"> 252</span> <span id="253"> 253</span> <span id="254"> 254</span> <span id="255"> 255</span> <span id="256"> 256</span> <span id="257"> 257</span> <span id="258"> 258</span> <span id="259"> 259</span> <span id="260"> 260</span> <span id="261"> 261</span> <span id="262"> 262</span> <span id="263"> 263</span> <span id="264"> 264</span> <span id="265"> 265</span> <span id="266"> 266</span> <span id="267"> 267</span> <span id="268"> 268</span> <span id="269"> 269</span> <span id="270"> 270</span> <span id="271"> 271</span> <span id="272"> 272</span> <span id="273"> 273</span> <span id="274"> 274</span> <span id="275"> 275</span> <span id="276"> 276</span> <span id="277"> 277</span> <span id="278"> 278</span> <span id="279"> 279</span> <span id="280"> 280</span> <span id="281"> 281</span> <span id="282"> 282</span> <span id="283"> 283</span> <span id="284"> 284</span> <span id="285"> 285</span> <span id="286"> 286</span> <span id="287"> 287</span> <span id="288"> 288</span> <span id="289"> 289</span> <span id="290"> 290</span> <span id="291"> 291</span> <span id="292"> 292</span> <span id="293"> 293</span> <span id="294"> 294</span> <span id="295"> 295</span> <span id="296"> 296</span> <span id="297"> 297</span> <span id="298"> 298</span> <span id="299"> 299</span> <span id="300"> 300</span> <span id="301"> 301</span> <span id="302"> 302</span> <span id="303"> 303</span> <span id="304"> 304</span> <span id="305"> 305</span> <span id="306"> 306</span> <span id="307"> 307</span> <span id="308"> 308</span> <span id="309"> 309</span> <span id="310"> 310</span> <span id="311"> 311</span> <span id="312"> 312</span> <span id="313"> 313</span> <span id="314"> 314</span> <span id="315"> 315</span> <span id="316"> 316</span> <span id="317"> 317</span> <span id="318"> 318</span> <span id="319"> 319</span> <span id="320"> 320</span> <span id="321"> 321</span> <span id="322"> 322</span> <span id="323"> 323</span> <span id="324"> 324</span> <span id="325"> 325</span> <span id="326"> 326</span> <span id="327"> 327</span> <span id="328"> 328</span> <span id="329"> 329</span> <span id="330"> 330</span> <span id="331"> 331</span> <span id="332"> 332</span> <span id="333"> 333</span> <span id="334"> 334</span> <span id="335"> 335</span> <span id="336"> 336</span> <span id="337"> 337</span> <span id="338"> 338</span> <span id="339"> 339</span> <span id="340"> 340</span> <span id="341"> 341</span> <span id="342"> 342</span> <span id="343"> 343</span> <span id="344"> 344</span> <span id="345"> 345</span> <span id="346"> 346</span> <span id="347"> 347</span> <span id="348"> 348</span> <span id="349"> 349</span> <span id="350"> 350</span> <span id="351"> 351</span> <span id="352"> 352</span> <span id="353"> 353</span> <span id="354"> 354</span> <span id="355"> 355</span> <span id="356"> 356</span> <span id="357"> 357</span> <span id="358"> 358</span> <span id="359"> 359</span> <span id="360"> 360</span> <span id="361"> 361</span> <span id="362"> 362</span> <span id="363"> 363</span> <span id="364"> 364</span> <span id="365"> 365</span> <span id="366"> 366</span> <span id="367"> 367</span> <span id="368"> 368</span> <span id="369"> 369</span> <span id="370"> 370</span> <span id="371"> 371</span> <span id="372"> 372</span> <span id="373"> 373</span> <span id="374"> 374</span> <span id="375"> 375</span> <span id="376"> 376</span> <span id="377"> 377</span> <span id="378"> 378</span> <span id="379"> 379</span> <span id="380"> 380</span> <span id="381"> 381</span> <span id="382"> 382</span> <span id="383"> 383</span> <span id="384"> 384</span> <span id="385"> 385</span> <span id="386"> 386</span> <span id="387"> 387</span> <span id="388"> 388</span> <span id="389"> 389</span> <span id="390"> 390</span> <span id="391"> 391</span> <span id="392"> 392</span> <span id="393"> 393</span> <span id="394"> 394</span> <span id="395"> 395</span> <span id="396"> 396</span> <span id="397"> 397</span> <span id="398"> 398</span> <span id="399"> 399</span> <span id="400"> 400</span> <span id="401"> 401</span> <span id="402"> 402</span> <span id="403"> 403</span> <span id="404"> 404</span> <span id="405"> 405</span> <span id="406"> 406</span> <span id="407"> 407</span> <span id="408"> 408</span> <span id="409"> 409</span> <span id="410"> 410</span> <span id="411"> 411</span> <span id="412"> 412</span> <span id="413"> 413</span> <span id="414"> 414</span> <span id="415"> 415</span> <span id="416"> 416</span> <span id="417"> 417</span> <span id="418"> 418</span> <span id="419"> 419</span> <span id="420"> 420</span> <span id="421"> 421</span> <span id="422"> 422</span> <span id="423"> 423</span> <span id="424"> 424</span> <span id="425"> 425</span> <span id="426"> 426</span> <span id="427"> 427</span> <span id="428"> 428</span> <span id="429"> 429</span> <span id="430"> 430</span> <span id="431"> 431</span> <span id="432"> 432</span> <span id="433"> 433</span> <span id="434"> 434</span> <span id="435"> 435</span> <span id="436"> 436</span> <span id="437"> 437</span> <span id="438"> 438</span> <span id="439"> 439</span> <span id="440"> 440</span> <span id="441"> 441</span> <span id="442"> 442</span> <span id="443"> 443</span> <span id="444"> 444</span> <span id="445"> 445</span> <span id="446"> 446</span> <span id="447"> 447</span> <span id="448"> 448</span> <span id="449"> 449</span> <span id="450"> 450</span> <span id="451"> 451</span> <span id="452"> 452</span> <span id="453"> 453</span> <span id="454"> 454</span> <span id="455"> 455</span> <span id="456"> 456</span> <span id="457"> 457</span> <span id="458"> 458</span> <span id="459"> 459</span> <span id="460"> 460</span> <span id="461"> 461</span> <span id="462"> 462</span> <span id="463"> 463</span> <span id="464"> 464</span> <span id="465"> 465</span> <span id="466"> 466</span> <span id="467"> 467</span> <span id="468"> 468</span> <span id="469"> 469</span> <span id="470"> 470</span> <span id="471"> 471</span> <span id="472"> 472</span> <span id="473"> 473</span> <span id="474"> 474</span> <span id="475"> 475</span> <span id="476"> 476</span> <span id="477"> 477</span> <span id="478"> 478</span> <span id="479"> 479</span> <span id="480"> 480</span> <span id="481"> 481</span> <span id="482"> 482</span> <span id="483"> 483</span> <span id="484"> 484</span> <span id="485"> 485</span> <span id="486"> 486</span> <span id="487"> 487</span> <span id="488"> 488</span> <span id="489"> 489</span> <span id="490"> 490</span> <span id="491"> 491</span> <span id="492"> 492</span> <span id="493"> 493</span> <span id="494"> 494</span> <span id="495"> 495</span> <span id="496"> 496</span> <span id="497"> 497</span> <span id="498"> 498</span> <span id="499"> 499</span> <span id="500"> 500</span> <span id="501"> 501</span> <span id="502"> 502</span> <span id="503"> 503</span> <span id="504"> 504</span> <span id="505"> 505</span> <span id="506"> 506</span> <span id="507"> 507</span> <span id="508"> 508</span> <span id="509"> 509</span> <span id="510"> 510</span> <span id="511"> 511</span> <span id="512"> 512</span> <span id="513"> 513</span> <span id="514"> 514</span> <span id="515"> 515</span> <span id="516"> 516</span> <span id="517"> 517</span> <span id="518"> 518</span> <span id="519"> 519</span> <span id="520"> 520</span> <span id="521"> 521</span> <span id="522"> 522</span> <span id="523"> 523</span> <span id="524"> 524</span> <span id="525"> 525</span> <span id="526"> 526</span> <span id="527"> 527</span> <span id="528"> 528</span> <span id="529"> 529</span> <span id="530"> 530</span> <span id="531"> 531</span> <span id="532"> 532</span> <span id="533"> 533</span> <span id="534"> 534</span> <span id="535"> 535</span> <span id="536"> 536</span> <span id="537"> 537</span> <span id="538"> 538</span> <span id="539"> 539</span> <span id="540"> 540</span> <span id="541"> 541</span> <span id="542"> 542</span> <span id="543"> 543</span> <span id="544"> 544</span> <span id="545"> 545</span> <span id="546"> 546</span> <span id="547"> 547</span> <span id="548"> 548</span> <span id="549"> 549</span> <span id="550"> 550</span> <span id="551"> 551</span> <span id="552"> 552</span> <span id="553"> 553</span> <span id="554"> 554</span> <span id="555"> 555</span> <span id="556"> 556</span> <span id="557"> 557</span> <span id="558"> 558</span> <span id="559"> 559</span> <span id="560"> 560</span> <span id="561"> 561</span> <span id="562"> 562</span> <span id="563"> 563</span> <span id="564"> 564</span> <span id="565"> 565</span> <span id="566"> 566</span> <span id="567"> 567</span> <span id="568"> 568</span> <span id="569"> 569</span> <span id="570"> 570</span> <span id="571"> 571</span> <span id="572"> 572</span> <span id="573"> 573</span> <span id="574"> 574</span> <span id="575"> 575</span> <span id="576"> 576</span> <span id="577"> 577</span> <span id="578"> 578</span> <span id="579"> 579</span> <span id="580"> 580</span> <span id="581"> 581</span> <span id="582"> 582</span> <span id="583"> 583</span> <span id="584"> 584</span> <span id="585"> 585</span> <span id="586"> 586</span> <span id="587"> 587</span> <span id="588"> 588</span> <span id="589"> 589</span> <span id="590"> 590</span> <span id="591"> 591</span> <span id="592"> 592</span> <span id="593"> 593</span> <span id="594"> 594</span> <span id="595"> 595</span> <span id="596"> 596</span> <span id="597"> 597</span> <span id="598"> 598</span> <span id="599"> 599</span> <span id="600"> 600</span> <span id="601"> 601</span> <span id="602"> 602</span> <span id="603"> 603</span> <span id="604"> 604</span> <span id="605"> 605</span> <span id="606"> 606</span> <span id="607"> 607</span> <span id="608"> 608</span> <span id="609"> 609</span> <span id="610"> 610</span> <span id="611"> 611</span> <span id="612"> 612</span> <span id="613"> 613</span> <span id="614"> 614</span> <span id="615"> 615</span> <span id="616"> 616</span> <span id="617"> 617</span> <span id="618"> 618</span> <span id="619"> 619</span> <span id="620"> 620</span> <span id="621"> 621</span> <span id="622"> 622</span> <span id="623"> 623</span> <span id="624"> 624</span> <span id="625"> 625</span> <span id="626"> 626</span> <span id="627"> 627</span> <span id="628"> 628</span> <span id="629"> 629</span> <span id="630"> 630</span> <span id="631"> 631</span> <span id="632"> 632</span> <span id="633"> 633</span> <span id="634"> 634</span> <span id="635"> 635</span> <span id="636"> 636</span> <span id="637"> 637</span> <span id="638"> 638</span> <span id="639"> 639</span> <span id="640"> 640</span> <span id="641"> 641</span> <span id="642"> 642</span> <span id="643"> 643</span> <span id="644"> 644</span> <span id="645"> 645</span> <span id="646"> 646</span> <span id="647"> 647</span> <span id="648"> 648</span> <span id="649"> 649</span> <span id="650"> 650</span> <span id="651"> 651</span> <span id="652"> 652</span> <span id="653"> 653</span> <span id="654"> 654</span> <span id="655"> 655</span> <span id="656"> 656</span> <span id="657"> 657</span> <span id="658"> 658</span> <span id="659"> 659</span> <span id="660"> 660</span> <span id="661"> 661</span> <span id="662"> 662</span> <span id="663"> 663</span> <span id="664"> 664</span> <span id="665"> 665</span> <span id="666"> 666</span> <span id="667"> 667</span> <span id="668"> 668</span> <span id="669"> 669</span> <span id="670"> 670</span> <span id="671"> 671</span> <span id="672"> 672</span> <span id="673"> 673</span> <span id="674"> 674</span> <span id="675"> 675</span> <span id="676"> 676</span> <span id="677"> 677</span> <span id="678"> 678</span> <span id="679"> 679</span> <span id="680"> 680</span> <span id="681"> 681</span> <span id="682"> 682</span> <span id="683"> 683</span> <span id="684"> 684</span> <span id="685"> 685</span> <span id="686"> 686</span> <span id="687"> 687</span> <span id="688"> 688</span> <span id="689"> 689</span> <span id="690"> 690</span> <span id="691"> 691</span> <span id="692"> 692</span> <span id="693"> 693</span> <span id="694"> 694</span> <span id="695"> 695</span> <span id="696"> 696</span> <span id="697"> 697</span> <span id="698"> 698</span> <span id="699"> 699</span> <span id="700"> 700</span> <span id="701"> 701</span> <span id="702"> 702</span> <span id="703"> 703</span> <span id="704"> 704</span> <span id="705"> 705</span> <span id="706"> 706</span> <span id="707"> 707</span> <span id="708"> 708</span> <span id="709"> 709</span> <span id="710"> 710</span> <span id="711"> 711</span> <span id="712"> 712</span> <span id="713"> 713</span> <span id="714"> 714</span> <span id="715"> 715</span> <span id="716"> 716</span> <span id="717"> 717</span> <span id="718"> 718</span> <span id="719"> 719</span> <span id="720"> 720</span> <span id="721"> 721</span> <span id="722"> 722</span> <span id="723"> 723</span> <span id="724"> 724</span> <span id="725"> 725</span> <span id="726"> 726</span> <span id="727"> 727</span> <span id="728"> 728</span> <span id="729"> 729</span> <span id="730"> 730</span> <span id="731"> 731</span> <span id="732"> 732</span> <span id="733"> 733</span> <span id="734"> 734</span> <span id="735"> 735</span> <span id="736"> 736</span> <span id="737"> 737</span> <span id="738"> 738</span> <span id="739"> 739</span> <span id="740"> 740</span> <span id="741"> 741</span> <span id="742"> 742</span> <span id="743"> 743</span> <span id="744"> 744</span> <span id="745"> 745</span> <span id="746"> 746</span> <span id="747"> 747</span> <span id="748"> 748</span> <span id="749"> 749</span> <span id="750"> 750</span> <span id="751"> 751</span> <span id="752"> 752</span> <span id="753"> 753</span> <span id="754"> 754</span> <span id="755"> 755</span> <span id="756"> 756</span> <span id="757"> 757</span> <span id="758"> 758</span> <span id="759"> 759</span> <span id="760"> 760</span> <span id="761"> 761</span> <span id="762"> 762</span> <span id="763"> 763</span> <span id="764"> 764</span> <span id="765"> 765</span> <span id="766"> 766</span> <span id="767"> 767</span> <span id="768"> 768</span> <span id="769"> 769</span> <span id="770"> 770</span> <span id="771"> 771</span> <span id="772"> 772</span> <span id="773"> 773</span> <span id="774"> 774</span> <span id="775"> 775</span> <span id="776"> 776</span> <span id="777"> 777</span> <span id="778"> 778</span> <span id="779"> 779</span> <span id="780"> 780</span> <span id="781"> 781</span> <span id="782"> 782</span> <span id="783"> 783</span> <span id="784"> 784</span> <span id="785"> 785</span> <span id="786"> 786</span> <span id="787"> 787</span> <span id="788"> 788</span> <span id="789"> 789</span> <span id="790"> 790</span> <span id="791"> 791</span> <span id="792"> 792</span> <span id="793"> 793</span> <span id="794"> 794</span> <span id="795"> 795</span> <span id="796"> 796</span> <span id="797"> 797</span> <span id="798"> 798</span> <span id="799"> 799</span> <span id="800"> 800</span> <span id="801"> 801</span> <span id="802"> 802</span> <span id="803"> 803</span> <span id="804"> 804</span> <span id="805"> 805</span> <span id="806"> 806</span> <span id="807"> 807</span> <span id="808"> 808</span> <span id="809"> 809</span> <span id="810"> 810</span> <span id="811"> 811</span> <span id="812"> 812</span> <span id="813"> 813</span> <span id="814"> 814</span> <span id="815"> 815</span> <span id="816"> 816</span> <span id="817"> 817</span> <span id="818"> 818</span> <span id="819"> 819</span> <span id="820"> 820</span> <span id="821"> 821</span> <span id="822"> 822</span> <span id="823"> 823</span> <span id="824"> 824</span> <span id="825"> 825</span> <span id="826"> 826</span> <span id="827"> 827</span> <span id="828"> 828</span> <span id="829"> 829</span> <span id="830"> 830</span> <span id="831"> 831</span> <span id="832"> 832</span> <span id="833"> 833</span> <span id="834"> 834</span> <span id="835"> 835</span> <span id="836"> 836</span> <span id="837"> 837</span> <span id="838"> 838</span> <span id="839"> 839</span> <span id="840"> 840</span> <span id="841"> 841</span> <span id="842"> 842</span> <span id="843"> 843</span> <span id="844"> 844</span> <span id="845"> 845</span> <span id="846"> 846</span> <span id="847"> 847</span> <span id="848"> 848</span> <span id="849"> 849</span> <span id="850"> 850</span> <span id="851"> 851</span> <span id="852"> 852</span> <span id="853"> 853</span> <span id="854"> 854</span> <span id="855"> 855</span> <span id="856"> 856</span> <span id="857"> 857</span> <span id="858"> 858</span> <span id="859"> 859</span> <span id="860"> 860</span> <span id="861"> 861</span> <span id="862"> 862</span> <span id="863"> 863</span> <span id="864"> 864</span> <span id="865"> 865</span> <span id="866"> 866</span> <span id="867"> 867</span> <span id="868"> 868</span> <span id="869"> 869</span> <span id="870"> 870</span> <span id="871"> 871</span> <span id="872"> 872</span> <span id="873"> 873</span> <span id="874"> 874</span> <span id="875"> 875</span> <span id="876"> 876</span> <span id="877"> 877</span> <span id="878"> 878</span> <span id="879"> 879</span> <span id="880"> 880</span> <span id="881"> 881</span> <span id="882"> 882</span> <span id="883"> 883</span> <span id="884"> 884</span> <span id="885"> 885</span> <span id="886"> 886</span> <span id="887"> 887</span> <span id="888"> 888</span> <span id="889"> 889</span> <span id="890"> 890</span> <span id="891"> 891</span> <span id="892"> 892</span> <span id="893"> 893</span> <span id="894"> 894</span> <span id="895"> 895</span> <span id="896"> 896</span> <span id="897"> 897</span> <span id="898"> 898</span> <span id="899"> 899</span> <span id="900"> 900</span> <span id="901"> 901</span> <span id="902"> 902</span> <span id="903"> 903</span> <span id="904"> 904</span> <span id="905"> 905</span> <span id="906"> 906</span> <span id="907"> 907</span> <span id="908"> 908</span> <span id="909"> 909</span> <span id="910"> 910</span> <span id="911"> 911</span> <span id="912"> 912</span> <span id="913"> 913</span> <span id="914"> 914</span> <span id="915"> 915</span> <span id="916"> 916</span> <span id="917"> 917</span> <span id="918"> 918</span> <span id="919"> 919</span> <span id="920"> 920</span> <span id="921"> 921</span> <span id="922"> 922</span> <span id="923"> 923</span> <span id="924"> 924</span> <span id="925"> 925</span> <span id="926"> 926</span> <span id="927"> 927</span> <span id="928"> 928</span> <span id="929"> 929</span> <span id="930"> 930</span> <span id="931"> 931</span> <span id="932"> 932</span> <span id="933"> 933</span> <span id="934"> 934</span> <span id="935"> 935</span> <span id="936"> 936</span> <span id="937"> 937</span> <span id="938"> 938</span> <span id="939"> 939</span> <span id="940"> 940</span> <span id="941"> 941</span> <span id="942"> 942</span> <span id="943"> 943</span> <span id="944"> 944</span> <span id="945"> 945</span> <span id="946"> 946</span> <span id="947"> 947</span> <span id="948"> 948</span> <span id="949"> 949</span> <span id="950"> 950</span> <span id="951"> 951</span> <span id="952"> 952</span> <span id="953"> 953</span> <span id="954"> 954</span> <span id="955"> 955</span> <span id="956"> 956</span> <span id="957"> 957</span> <span id="958"> 958</span> <span id="959"> 959</span> <span id="960"> 960</span> <span id="961"> 961</span> <span id="962"> 962</span> <span id="963"> 963</span> <span id="964"> 964</span> <span id="965"> 965</span> <span id="966"> 966</span> <span id="967"> 967</span> <span id="968"> 968</span> <span id="969"> 969</span> <span id="970"> 970</span> <span id="971"> 971</span> <span id="972"> 972</span> <span id="973"> 973</span> <span id="974"> 974</span> <span id="975"> 975</span> <span id="976"> 976</span> <span id="977"> 977</span> <span id="978"> 978</span> <span id="979"> 979</span> <span id="980"> 980</span> <span id="981"> 981</span> <span id="982"> 982</span> <span id="983"> 983</span> <span id="984"> 984</span> <span id="985"> 985</span> <span id="986"> 986</span> <span id="987"> 987</span> <span id="988"> 988</span> <span id="989"> 989</span> <span id="990"> 990</span> <span id="991"> 991</span> <span id="992"> 992</span> <span id="993"> 993</span> <span id="994"> 994</span> <span id="995"> 995</span> <span id="996"> 996</span> <span id="997"> 997</span> <span id="998"> 998</span> <span id="999"> 999</span> <span id="1000">1000</span> <span id="1001">1001</span> <span id="1002">1002</span> <span id="1003">1003</span> <span id="1004">1004</span> <span id="1005">1005</span> <span id="1006">1006</span> <span id="1007">1007</span> <span id="1008">1008</span> <span id="1009">1009</span> <span id="1010">1010</span> <span id="1011">1011</span> <span id="1012">1012</span> <span id="1013">1013</span> <span id="1014">1014</span> <span id="1015">1015</span> <span id="1016">1016</span> <span id="1017">1017</span> <span id="1018">1018</span> <span id="1019">1019</span> <span id="1020">1020</span> <span id="1021">1021</span> <span id="1022">1022</span> <span id="1023">1023</span> <span id="1024">1024</span> <span id="1025">1025</span> <span id="1026">1026</span> <span id="1027">1027</span> <span id="1028">1028</span> <span id="1029">1029</span> <span id="1030">1030</span> <span id="1031">1031</span> <span id="1032">1032</span> <span id="1033">1033</span> <span id="1034">1034</span> <span id="1035">1035</span> <span id="1036">1036</span> <span id="1037">1037</span> <span id="1038">1038</span> <span id="1039">1039</span> <span id="1040">1040</span> <span id="1041">1041</span> <span id="1042">1042</span> <span id="1043">1043</span> <span id="1044">1044</span> <span id="1045">1045</span> <span id="1046">1046</span> <span id="1047">1047</span> <span id="1048">1048</span> <span id="1049">1049</span> <span id="1050">1050</span> <span id="1051">1051</span> <span id="1052">1052</span> <span id="1053">1053</span> <span id="1054">1054</span> <span id="1055">1055</span> <span id="1056">1056</span> <span id="1057">1057</span> <span id="1058">1058</span> <span id="1059">1059</span> <span id="1060">1060</span> <span id="1061">1061</span> <span id="1062">1062</span> <span id="1063">1063</span> <span id="1064">1064</span> <span id="1065">1065</span> <span id="1066">1066</span> <span id="1067">1067</span> <span id="1068">1068</span> <span id="1069">1069</span> <span id="1070">1070</span> <span id="1071">1071</span> <span id="1072">1072</span> <span id="1073">1073</span> <span id="1074">1074</span> <span id="1075">1075</span> <span id="1076">1076</span> <span id="1077">1077</span> <span id="1078">1078</span> <span id="1079">1079</span> <span id="1080">1080</span> <span id="1081">1081</span> <span id="1082">1082</span> <span id="1083">1083</span> <span id="1084">1084</span> <span id="1085">1085</span> <span id="1086">1086</span> <span id="1087">1087</span> <span id="1088">1088</span> <span id="1089">1089</span> <span id="1090">1090</span> <span id="1091">1091</span> <span id="1092">1092</span> <span id="1093">1093</span> <span id="1094">1094</span> <span id="1095">1095</span> <span id="1096">1096</span> <span id="1097">1097</span> <span id="1098">1098</span> <span id="1099">1099</span> <span id="1100">1100</span> <span id="1101">1101</span> <span id="1102">1102</span> <span id="1103">1103</span> <span id="1104">1104</span> <span id="1105">1105</span> <span id="1106">1106</span> <span id="1107">1107</span> <span id="1108">1108</span> <span id="1109">1109</span> <span id="1110">1110</span> <span id="1111">1111</span> <span id="1112">1112</span> <span id="1113">1113</span> <span id="1114">1114</span> <span id="1115">1115</span> <span id="1116">1116</span> <span id="1117">1117</span> <span id="1118">1118</span> <span id="1119">1119</span> <span id="1120">1120</span> <span id="1121">1121</span> <span id="1122">1122</span> <span id="1123">1123</span> <span id="1124">1124</span> <span id="1125">1125</span> <span id="1126">1126</span> <span id="1127">1127</span> <span id="1128">1128</span> <span id="1129">1129</span> <span id="1130">1130</span> <span id="1131">1131</span> <span id="1132">1132</span> <span id="1133">1133</span> <span id="1134">1134</span> <span id="1135">1135</span> <span id="1136">1136</span> <span id="1137">1137</span> <span id="1138">1138</span> <span id="1139">1139</span> <span id="1140">1140</span> <span id="1141">1141</span> <span id="1142">1142</span> <span id="1143">1143</span> <span id="1144">1144</span> <span id="1145">1145</span> <span id="1146">1146</span> <span id="1147">1147</span> <span id="1148">1148</span> <span id="1149">1149</span> <span id="1150">1150</span> <span id="1151">1151</span> <span id="1152">1152</span> <span id="1153">1153</span> <span id="1154">1154</span> <span id="1155">1155</span> <span id="1156">1156</span> <span id="1157">1157</span> <span id="1158">1158</span> <span id="1159">1159</span> <span id="1160">1160</span> <span id="1161">1161</span> <span id="1162">1162</span> <span id="1163">1163</span> <span id="1164">1164</span> <span id="1165">1165</span> <span id="1166">1166</span> <span id="1167">1167</span> <span id="1168">1168</span> <span id="1169">1169</span> <span id="1170">1170</span> <span id="1171">1171</span> <span id="1172">1172</span> <span id="1173">1173</span> <span id="1174">1174</span> <span id="1175">1175</span> <span id="1176">1176</span> <span id="1177">1177</span> <span id="1178">1178</span> <span id="1179">1179</span> <span id="1180">1180</span> <span id="1181">1181</span> <span id="1182">1182</span> <span id="1183">1183</span> <span id="1184">1184</span> <span id="1185">1185</span> <span id="1186">1186</span> <span id="1187">1187</span> <span id="1188">1188</span> <span id="1189">1189</span> <span id="1190">1190</span> <span id="1191">1191</span> <span id="1192">1192</span> <span id="1193">1193</span> <span id="1194">1194</span> <span id="1195">1195</span> <span id="1196">1196</span> <span id="1197">1197</span> <span id="1198">1198</span> <span id="1199">1199</span> <span id="1200">1200</span> <span id="1201">1201</span> <span id="1202">1202</span> <span id="1203">1203</span> <span id="1204">1204</span> <span id="1205">1205</span> <span id="1206">1206</span> <span id="1207">1207</span> <span id="1208">1208</span> <span id="1209">1209</span> <span id="1210">1210</span> <span id="1211">1211</span> <span id="1212">1212</span> <span id="1213">1213</span> <span id="1214">1214</span> <span id="1215">1215</span> <span id="1216">1216</span> <span id="1217">1217</span> <span id="1218">1218</span> <span id="1219">1219</span> <span id="1220">1220</span> <span id="1221">1221</span> <span id="1222">1222</span> <span id="1223">1223</span> <span id="1224">1224</span> <span id="1225">1225</span> <span id="1226">1226</span> <span id="1227">1227</span> <span id="1228">1228</span> <span id="1229">1229</span> <span id="1230">1230</span> <span id="1231">1231</span> <span id="1232">1232</span> <span id="1233">1233</span> <span id="1234">1234</span> <span id="1235">1235</span> <span id="1236">1236</span> <span id="1237">1237</span> <span id="1238">1238</span> <span id="1239">1239</span> <span id="1240">1240</span> <span id="1241">1241</span> <span id="1242">1242</span> <span id="1243">1243</span> <span id="1244">1244</span> <span id="1245">1245</span> <span id="1246">1246</span> <span id="1247">1247</span> <span id="1248">1248</span> <span id="1249">1249</span> <span id="1250">1250</span> <span id="1251">1251</span> <span id="1252">1252</span> <span id="1253">1253</span> <span id="1254">1254</span> <span id="1255">1255</span> <span id="1256">1256</span> <span id="1257">1257</span> <span id="1258">1258</span> <span id="1259">1259</span> <span id="1260">1260</span> <span id="1261">1261</span> <span id="1262">1262</span> <span id="1263">1263</span> <span id="1264">1264</span> <span id="1265">1265</span> <span id="1266">1266</span> <span id="1267">1267</span> <span id="1268">1268</span> <span id="1269">1269</span> <span id="1270">1270</span> <span id="1271">1271</span> <span id="1272">1272</span> <span id="1273">1273</span> <span id="1274">1274</span> <span id="1275">1275</span> <span id="1276">1276</span> <span id="1277">1277</span> <span id="1278">1278</span> <span id="1279">1279</span> <span id="1280">1280</span> <span id="1281">1281</span> <span id="1282">1282</span> <span id="1283">1283</span> <span id="1284">1284</span> <span id="1285">1285</span> <span id="1286">1286</span> <span id="1287">1287</span> <span id="1288">1288</span> <span id="1289">1289</span> <span id="1290">1290</span> <span id="1291">1291</span> <span id="1292">1292</span> <span id="1293">1293</span> <span id="1294">1294</span> <span id="1295">1295</span> <span id="1296">1296</span> <span id="1297">1297</span> <span id="1298">1298</span> <span id="1299">1299</span> <span id="1300">1300</span> <span id="1301">1301</span> <span id="1302">1302</span> <span id="1303">1303</span> <span id="1304">1304</span> <span id="1305">1305</span> <span id="1306">1306</span> <span id="1307">1307</span> <span id="1308">1308</span> <span id="1309">1309</span> <span id="1310">1310</span> <span id="1311">1311</span> <span id="1312">1312</span> <span id="1313">1313</span> <span id="1314">1314</span> <span id="1315">1315</span> <span id="1316">1316</span> <span id="1317">1317</span> <span id="1318">1318</span> <span id="1319">1319</span> <span id="1320">1320</span> <span id="1321">1321</span> <span id="1322">1322</span> <span id="1323">1323</span> <span id="1324">1324</span> <span id="1325">1325</span> <span id="1326">1326</span> <span id="1327">1327</span> <span id="1328">1328</span> <span id="1329">1329</span> <span id="1330">1330</span> <span id="1331">1331</span> <span id="1332">1332</span> <span id="1333">1333</span> <span id="1334">1334</span> <span id="1335">1335</span> <span id="1336">1336</span> <span id="1337">1337</span> <span id="1338">1338</span> <span id="1339">1339</span> <span id="1340">1340</span> <span id="1341">1341</span> <span id="1342">1342</span> <span id="1343">1343</span> <span id="1344">1344</span> <span id="1345">1345</span> <span id="1346">1346</span> <span id="1347">1347</span> <span id="1348">1348</span> <span id="1349">1349</span> <span id="1350">1350</span> <span id="1351">1351</span> <span id="1352">1352</span> <span id="1353">1353</span> <span id="1354">1354</span> <span id="1355">1355</span> <span id="1356">1356</span> <span id="1357">1357</span> <span id="1358">1358</span> <span id="1359">1359</span> <span id="1360">1360</span> <span id="1361">1361</span> <span id="1362">1362</span> <span id="1363">1363</span> <span id="1364">1364</span> <span id="1365">1365</span> <span id="1366">1366</span> <span id="1367">1367</span> <span id="1368">1368</span> <span id="1369">1369</span> <span id="1370">1370</span> <span id="1371">1371</span> <span id="1372">1372</span> <span id="1373">1373</span> <span id="1374">1374</span> <span id="1375">1375</span> <span id="1376">1376</span> <span id="1377">1377</span> <span id="1378">1378</span> <span id="1379">1379</span> <span id="1380">1380</span> <span id="1381">1381</span> <span id="1382">1382</span> <span id="1383">1383</span> <span id="1384">1384</span> <span id="1385">1385</span> <span id="1386">1386</span> <span id="1387">1387</span> <span id="1388">1388</span> <span id="1389">1389</span> <span id="1390">1390</span> <span id="1391">1391</span> <span id="1392">1392</span> <span id="1393">1393</span> <span id="1394">1394</span> <span id="1395">1395</span> <span id="1396">1396</span> <span id="1397">1397</span> <span id="1398">1398</span> <span id="1399">1399</span> <span id="1400">1400</span> <span id="1401">1401</span> <span id="1402">1402</span> <span id="1403">1403</span> <span id="1404">1404</span> <span id="1405">1405</span> <span id="1406">1406</span> <span id="1407">1407</span> <span id="1408">1408</span> <span id="1409">1409</span> <span id="1410">1410</span> <span id="1411">1411</span> <span id="1412">1412</span> <span id="1413">1413</span> <span id="1414">1414</span> <span id="1415">1415</span> <span id="1416">1416</span> <span id="1417">1417</span> <span id="1418">1418</span> <span id="1419">1419</span> <span id="1420">1420</span> <span id="1421">1421</span> <span id="1422">1422</span> <span id="1423">1423</span> <span id="1424">1424</span> <span id="1425">1425</span> <span id="1426">1426</span> <span id="1427">1427</span> <span id="1428">1428</span> <span id="1429">1429</span> <span id="1430">1430</span> <span id="1431">1431</span> <span id="1432">1432</span> <span id="1433">1433</span> <span id="1434">1434</span> <span id="1435">1435</span> <span id="1436">1436</span> <span id="1437">1437</span> <span id="1438">1438</span> <span id="1439">1439</span> <span id="1440">1440</span> <span id="1441">1441</span> <span id="1442">1442</span> <span id="1443">1443</span> <span id="1444">1444</span> <span id="1445">1445</span> <span id="1446">1446</span> <span id="1447">1447</span> <span id="1448">1448</span> <span id="1449">1449</span> <span id="1450">1450</span> <span id="1451">1451</span> <span id="1452">1452</span> <span id="1453">1453</span> <span id="1454">1454</span> <span id="1455">1455</span> <span id="1456">1456</span> <span id="1457">1457</span> <span id="1458">1458</span> <span id="1459">1459</span> <span id="1460">1460</span> <span id="1461">1461</span> <span id="1462">1462</span> <span id="1463">1463</span> <span id="1464">1464</span> <span id="1465">1465</span> <span id="1466">1466</span> <span id="1467">1467</span> <span id="1468">1468</span> <span id="1469">1469</span> <span id="1470">1470</span> <span id="1471">1471</span> <span id="1472">1472</span> <span id="1473">1473</span> <span id="1474">1474</span> <span id="1475">1475</span> <span id="1476">1476</span> <span id="1477">1477</span> <span id="1478">1478</span> <span id="1479">1479</span> <span id="1480">1480</span> <span id="1481">1481</span> <span id="1482">1482</span> <span id="1483">1483</span> <span id="1484">1484</span> <span id="1485">1485</span> <span id="1486">1486</span> <span id="1487">1487</span> <span id="1488">1488</span> <span id="1489">1489</span> <span id="1490">1490</span> </pre><div class="example-wrap"><pre class="rust "> <span class="kw">use</span> <span class="ident">approx</span>::{<span class="ident">AbsDiffEq</span>, <span class="ident">RelativeEq</span>, <span class="ident">UlpsEq</span>}; <span class="kw">use</span> <span class="ident">num</span>::<span class="ident">Zero</span>; <span class="kw">use</span> <span class="ident">std</span>::<span class="ident">fmt</span>; <span class="kw">use</span> <span class="ident">std</span>::<span class="ident">hash</span>; <span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">"abomonation-serialize"</span>)]</span> <span class="kw">use</span> <span class="ident">std</span>::<span class="ident">io</span>::{<span class="prelude-ty">Result</span> <span class="kw">as</span> <span class="ident">IOResult</span>, <span class="ident">Write</span>}; <span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">"serde-serialize"</span>)]</span> <span class="kw">use</span> <span class="kw">crate</span>::<span class="ident">base</span>::<span class="ident">storage</span>::<span class="ident">Owned</span>; <span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">"serde-serialize"</span>)]</span> <span class="kw">use</span> <span class="ident">serde</span>::{<span class="ident">Deserialize</span>, <span class="ident">Deserializer</span>, <span class="ident">Serialize</span>, <span class="ident">Serializer</span>}; <span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">"abomonation-serialize"</span>)]</span> <span class="kw">use</span> <span class="ident">abomonation</span>::<span class="ident">Abomonation</span>; <span class="kw">use</span> <span class="ident">alga</span>::<span class="ident">general</span>::<span class="ident">RealField</span>; <span class="kw">use</span> <span class="kw">crate</span>::<span class="ident">base</span>::<span class="ident">dimension</span>::{<span class="ident">U1</span>, <span class="ident">U3</span>, <span class="ident">U4</span>}; <span class="kw">use</span> <span class="kw">crate</span>::<span class="ident">base</span>::<span class="ident">storage</span>::{<span class="ident">CStride</span>, <span class="ident">RStride</span>}; <span class="kw">use</span> <span class="kw">crate</span>::<span class="ident">base</span>::{<span class="ident">Matrix3</span>, <span class="ident">Matrix4</span>, <span class="ident">MatrixSlice</span>, <span class="ident">MatrixSliceMut</span>, <span class="ident">Unit</span>, <span class="ident">Vector3</span>, <span class="ident">Vector4</span>}; <span class="kw">use</span> <span class="kw">crate</span>::<span class="ident">geometry</span>::{<span class="ident">Point3</span>, <span class="ident">Rotation</span>}; <span class="doccomment">/// A quaternion. See the type alias `UnitQuaternion = Unit<Quaternion>` for a quaternion</span> <span class="doccomment">/// that may be used as a rotation.</span> <span class="attribute">#[<span class="ident">repr</span>(<span class="ident">C</span>)]</span> <span class="attribute">#[<span class="ident">derive</span>(<span class="ident">Debug</span>)]</span> <span class="kw">pub</span> <span class="kw">struct</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span><span class="op">></span> { <span class="doccomment">/// This quaternion as a 4D vector of coordinates in the `[ x, y, z, w ]` storage order.</span> <span class="kw">pub</span> <span class="ident">coords</span>: <span class="ident">Vector4</span><span class="op"><</span><span class="ident">N</span><span class="op">></span>, } <span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">"abomonation-serialize"</span>)]</span> <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span><span class="op">></span> <span class="ident">Abomonation</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> <span class="kw">where</span> <span class="ident">Vector4</span><span class="op"><</span><span class="ident">N</span><span class="op">></span>: <span class="ident">Abomonation</span> { <span class="kw">unsafe</span> <span class="kw">fn</span> <span class="ident">entomb</span><span class="op"><</span><span class="ident">W</span>: <span class="ident">Write</span><span class="op">></span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">writer</span>: <span class="kw-2">&</span><span class="kw-2">mut</span> <span class="ident">W</span>) <span class="op">-</span><span class="op">></span> <span class="ident">IOResult</span><span class="op"><</span>()<span class="op">></span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">entomb</span>(<span class="ident">writer</span>) } <span class="kw">fn</span> <span class="ident">extent</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">usize</span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">extent</span>() } <span class="kw">unsafe</span> <span class="kw">fn</span> <span class="ident">exhume</span><span class="op"><</span><span class="lifetime">'a</span>, <span class="lifetime">'b</span><span class="op">></span>(<span class="kw-2">&</span><span class="lifetime">'a</span> <span class="kw-2">mut</span> <span class="self">self</span>, <span class="ident">bytes</span>: <span class="kw-2">&</span><span class="lifetime">'b</span> <span class="kw-2">mut</span> [<span class="ident">u8</span>]) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Option</span><span class="op"><</span><span class="kw-2">&</span><span class="lifetime">'b</span> <span class="kw-2">mut</span> [<span class="ident">u8</span>]<span class="op">></span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">exhume</span>(<span class="ident">bytes</span>) } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span> <span class="op">+</span> <span class="ident">Eq</span><span class="op">></span> <span class="ident">Eq</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> {} <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span><span class="op">></span> <span class="ident">PartialEq</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="kw">fn</span> <span class="ident">eq</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">rhs</span>: <span class="kw-2">&</span><span class="self">Self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">bool</span> { <span class="self">self</span>.<span class="ident">coords</span> <span class="op">=</span><span class="op">=</span> <span class="ident">rhs</span>.<span class="ident">coords</span> <span class="op">|</span><span class="op">|</span> <span class="comment">// Account for the double-covering of S², i.e. q = -q</span> <span class="self">self</span>.<span class="ident">as_vector</span>().<span class="ident">iter</span>().<span class="ident">zip</span>(<span class="ident">rhs</span>.<span class="ident">as_vector</span>().<span class="ident">iter</span>()).<span class="ident">all</span>(<span class="op">|</span>(<span class="ident">a</span>, <span class="ident">b</span>)<span class="op">|</span> <span class="kw-2">*</span><span class="ident">a</span> <span class="op">=</span><span class="op">=</span> <span class="op">-</span><span class="kw-2">*</span><span class="ident">b</span>) } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span> <span class="op">+</span> <span class="ident">hash</span>::<span class="ident">Hash</span><span class="op">></span> <span class="ident">hash</span>::<span class="ident">Hash</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="kw">fn</span> <span class="ident">hash</span><span class="op"><</span><span class="ident">H</span>: <span class="ident">hash</span>::<span class="ident">Hasher</span><span class="op">></span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">state</span>: <span class="kw-2">&</span><span class="kw-2">mut</span> <span class="ident">H</span>) { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">hash</span>(<span class="ident">state</span>) } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span><span class="op">></span> <span class="ident">Copy</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> {} <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span><span class="op">></span> <span class="ident">Clone</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">clone</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">Self</span>::<span class="ident">from</span>(<span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">clone</span>()) } } <span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">"serde-serialize"</span>)]</span> <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span><span class="op">></span> <span class="ident">Serialize</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> <span class="kw">where</span> <span class="ident">Owned</span><span class="op"><</span><span class="ident">N</span>, <span class="ident">U4</span><span class="op">></span>: <span class="ident">Serialize</span> { <span class="kw">fn</span> <span class="ident">serialize</span><span class="op"><</span><span class="ident">S</span><span class="op">></span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">serializer</span>: <span class="ident">S</span>) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Result</span><span class="op"><</span><span class="ident">S</span>::<span class="prelude-val">Ok</span>, <span class="ident">S</span>::<span class="ident">Error</span><span class="op">></span> <span class="kw">where</span> <span class="ident">S</span>: <span class="ident">Serializer</span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">serialize</span>(<span class="ident">serializer</span>) } } <span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">feature</span> <span class="op">=</span> <span class="string">"serde-serialize"</span>)]</span> <span class="kw">impl</span><span class="op"><</span><span class="lifetime">'a</span>, <span class="ident">N</span>: <span class="ident">RealField</span><span class="op">></span> <span class="ident">Deserialize</span><span class="op"><</span><span class="lifetime">'a</span><span class="op">></span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> <span class="kw">where</span> <span class="ident">Owned</span><span class="op"><</span><span class="ident">N</span>, <span class="ident">U4</span><span class="op">></span>: <span class="ident">Deserialize</span><span class="op"><</span><span class="lifetime">'a</span><span class="op">></span> { <span class="kw">fn</span> <span class="ident">deserialize</span><span class="op"><</span><span class="ident">Des</span><span class="op">></span>(<span class="ident">deserializer</span>: <span class="ident">Des</span>) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Result</span><span class="op"><</span><span class="self">Self</span>, <span class="ident">Des</span>::<span class="ident">Error</span><span class="op">></span> <span class="kw">where</span> <span class="ident">Des</span>: <span class="ident">Deserializer</span><span class="op"><</span><span class="lifetime">'a</span><span class="op">></span> { <span class="kw">let</span> <span class="ident">coords</span> <span class="op">=</span> <span class="ident">Vector4</span>::<span class="op"><</span><span class="ident">N</span><span class="op">></span>::<span class="ident">deserialize</span>(<span class="ident">deserializer</span>)<span class="question-mark">?</span>; <span class="prelude-val">Ok</span>(<span class="self">Self</span>::<span class="ident">from</span>(<span class="ident">coords</span>)) } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span><span class="op">></span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="doccomment">/// Moves this unit quaternion into one that owns its data.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="attribute">#[<span class="ident">deprecated</span>(<span class="ident">note</span> <span class="op">=</span> <span class="string">"This method is a no-op and will be removed in a future release."</span>)]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">into_owned</span>(<span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">self</span> } <span class="doccomment">/// Clones this unit quaternion into one that owns its data.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="attribute">#[<span class="ident">deprecated</span>(<span class="ident">note</span> <span class="op">=</span> <span class="string">"This method is a no-op and will be removed in a future release."</span>)]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">clone_owned</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">Self</span>::<span class="ident">from</span>(<span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">clone_owned</span>()) } <span class="doccomment">/// Normalizes this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let q_normalized = q.normalize();</span> <span class="doccomment">/// relative_eq!(q_normalized.norm(), 1.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">normalize</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">Self</span>::<span class="ident">from</span>(<span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">normalize</span>()) } <span class="doccomment">/// The imaginary part of this quaternion.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">imag</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">Vector3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">xyz</span>() } <span class="doccomment">/// The conjugate of this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let conj = q.conjugate();</span> <span class="doccomment">/// assert!(conj.i == -2.0 && conj.j == -3.0 && conj.k == -4.0 && conj.w == 1.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">conjugate</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">Self</span>::<span class="ident">from_parts</span>(<span class="self">self</span>.<span class="ident">w</span>, <span class="op">-</span><span class="self">self</span>.<span class="ident">imag</span>()) } <span class="doccomment">/// Inverts this quaternion if it is not zero.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let inv_q = q.try_inverse();</span> <span class="doccomment">///</span> <span class="doccomment">/// assert!(inv_q.is_some());</span> <span class="doccomment">/// assert_relative_eq!(inv_q.unwrap() * q, Quaternion::identity());</span> <span class="doccomment">///</span> <span class="doccomment">/// //Non-invertible case</span> <span class="doccomment">/// let q = Quaternion::new(0.0, 0.0, 0.0, 0.0);</span> <span class="doccomment">/// let inv_q = q.try_inverse();</span> <span class="doccomment">///</span> <span class="doccomment">/// assert!(inv_q.is_none());</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">try_inverse</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Option</span><span class="op"><</span><span class="self">Self</span><span class="op">></span> { <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">res</span> <span class="op">=</span> <span class="self">Self</span>::<span class="ident">from</span>(<span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">clone_owned</span>()); <span class="kw">if</span> <span class="ident">res</span>.<span class="ident">try_inverse_mut</span>() { <span class="prelude-val">Some</span>(<span class="ident">res</span>) } <span class="kw">else</span> { <span class="prelude-val">None</span> } } <span class="doccomment">/// Linear interpolation between two quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// Computes `self * (1 - t) + other * t`.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let q2 = Quaternion::new(10.0, 20.0, 30.0, 40.0);</span> <span class="doccomment">///</span> <span class="doccomment">/// assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(1.9, 3.8, 5.7, 7.6));</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">lerp</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">t</span>: <span class="ident">N</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">self</span> <span class="op">*</span> (<span class="ident">N</span>::<span class="ident">one</span>() <span class="op">-</span> <span class="ident">t</span>) <span class="op">+</span> <span class="ident">other</span> <span class="op">*</span> <span class="ident">t</span> } <span class="doccomment">/// The vector part `(i, j, k)` of this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// assert_eq!(q.vector()[0], 2.0);</span> <span class="doccomment">/// assert_eq!(q.vector()[1], 3.0);</span> <span class="doccomment">/// assert_eq!(q.vector()[2], 4.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">vector</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">MatrixSlice</span><span class="op"><</span><span class="ident">N</span>, <span class="ident">U3</span>, <span class="ident">U1</span>, <span class="ident">RStride</span><span class="op"><</span><span class="ident">N</span>, <span class="ident">U4</span>, <span class="ident">U1</span><span class="op">></span>, <span class="ident">CStride</span><span class="op"><</span><span class="ident">N</span>, <span class="ident">U4</span>, <span class="ident">U1</span><span class="op">></span><span class="op">></span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">fixed_rows</span>::<span class="op"><</span><span class="ident">U3</span><span class="op">></span>(<span class="number">0</span>) } <span class="doccomment">/// The scalar part `w` of this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// assert_eq!(q.scalar(), 1.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">scalar</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">N</span> { <span class="self">self</span>.<span class="ident">coords</span>[<span class="number">3</span>] } <span class="doccomment">/// Reinterprets this quaternion as a 4D vector.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{Vector4, Quaternion};</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// // Recall that the quaternion is stored internally as (i, j, k, w)</span> <span class="doccomment">/// // while the crate::new constructor takes the arguments as (w, i, j, k).</span> <span class="doccomment">/// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">as_vector</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="kw-2">&</span><span class="ident">Vector4</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="kw-2">&</span><span class="self">self</span>.<span class="ident">coords</span> } <span class="doccomment">/// The norm of this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// assert_relative_eq!(q.norm(), 5.47722557, epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">norm</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">N</span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">norm</span>() } <span class="doccomment">/// A synonym for the norm of this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// Aka the length.</span> <span class="doccomment">/// This is the same as `.norm()`</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// assert_relative_eq!(q.magnitude(), 5.47722557, epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">magnitude</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">N</span> { <span class="self">self</span>.<span class="ident">norm</span>() } <span class="doccomment">/// The squared norm of this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// assert_eq!(q.magnitude_squared(), 30.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">norm_squared</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">N</span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">norm_squared</span>() } <span class="doccomment">/// A synonym for the squared norm of this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// Aka the squared length.</span> <span class="doccomment">/// This is the same as `.norm_squared()`</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// assert_eq!(q.magnitude_squared(), 30.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">magnitude_squared</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">N</span> { <span class="self">self</span>.<span class="ident">norm_squared</span>() } <span class="doccomment">/// The dot product of two quaternions.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let q2 = Quaternion::new(5.0, 6.0, 7.0, 8.0);</span> <span class="doccomment">/// assert_eq!(q1.dot(&q2), 70.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">dot</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">rhs</span>: <span class="kw-2">&</span><span class="self">Self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">N</span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">dot</span>(<span class="kw-2">&</span><span class="ident">rhs</span>.<span class="ident">coords</span>) } <span class="doccomment">/// Calculates the inner product (also known as the dot product).</span> <span class="doccomment">/// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel</span> <span class="doccomment">/// Formula 4.89.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);</span> <span class="doccomment">/// let expected = Quaternion::new(-20.0, 0.0, 0.0, 0.0);</span> <span class="doccomment">/// let result = a.inner(&b);</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-5);</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">inner</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { (<span class="self">self</span> <span class="op">*</span> <span class="ident">other</span> <span class="op">+</span> <span class="ident">other</span> <span class="op">*</span> <span class="self">self</span>).<span class="ident">half</span>() } <span class="doccomment">/// Calculates the outer product (also known as the wedge product).</span> <span class="doccomment">/// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel</span> <span class="doccomment">/// Formula 4.89.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);</span> <span class="doccomment">/// let expected = Quaternion::new(0.0, -5.0, 18.0, -11.0);</span> <span class="doccomment">/// let result = a.outer(&b);</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-5);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">outer</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { (<span class="self">self</span> <span class="op">*</span> <span class="ident">other</span> <span class="op">-</span> <span class="ident">other</span> <span class="op">*</span> <span class="self">self</span>).<span class="ident">half</span>() } <span class="doccomment">/// Calculates the projection of `self` onto `other` (also known as the parallel).</span> <span class="doccomment">/// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel</span> <span class="doccomment">/// Formula 4.94.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);</span> <span class="doccomment">/// let expected = Quaternion::new(0.0, 3.333333333333333, 1.3333333333333333, 0.6666666666666666);</span> <span class="doccomment">/// let result = a.project(&b).unwrap();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-5);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">project</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Option</span><span class="op"><</span><span class="self">Self</span><span class="op">></span> { <span class="self">self</span>.<span class="ident">inner</span>(<span class="ident">other</span>).<span class="ident">right_div</span>(<span class="ident">other</span>) } <span class="doccomment">/// Calculates the rejection of `self` from `other` (also known as the perpendicular).</span> <span class="doccomment">/// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel</span> <span class="doccomment">/// Formula 4.94.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);</span> <span class="doccomment">/// let expected = Quaternion::new(0.0, -1.3333333333333333, 1.6666666666666665, 3.3333333333333335);</span> <span class="doccomment">/// let result = a.reject(&b).unwrap();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-5);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">reject</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Option</span><span class="op"><</span><span class="self">Self</span><span class="op">></span> { <span class="self">self</span>.<span class="ident">outer</span>(<span class="ident">other</span>).<span class="ident">right_div</span>(<span class="ident">other</span>) } <span class="doccomment">/// The polar decomposition of this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// Returns, from left to right: the quaternion norm, the half rotation angle, the rotation</span> <span class="doccomment">/// axis. If the rotation angle is zero, the rotation axis is set to `None`.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use std::f32;</span> <span class="doccomment">/// # use nalgebra::{Vector3, Quaternion};</span> <span class="doccomment">/// let q = Quaternion::new(0.0, 5.0, 0.0, 0.0);</span> <span class="doccomment">/// let (norm, half_ang, axis) = q.polar_decomposition();</span> <span class="doccomment">/// assert_eq!(norm, 5.0);</span> <span class="doccomment">/// assert_eq!(half_ang, f32::consts::FRAC_PI_2);</span> <span class="doccomment">/// assert_eq!(axis, Some(Vector3::x_axis()));</span> <span class="doccomment">/// ```</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">polar_decomposition</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> (<span class="ident">N</span>, <span class="ident">N</span>, <span class="prelude-ty">Option</span><span class="op"><</span><span class="ident">Unit</span><span class="op"><</span><span class="ident">Vector3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span><span class="op">></span><span class="op">></span>) { <span class="kw">if</span> <span class="kw">let</span> <span class="prelude-val">Some</span>((<span class="ident">q</span>, <span class="ident">n</span>)) <span class="op">=</span> <span class="ident">Unit</span>::<span class="ident">try_new_and_get</span>(<span class="kw-2">*</span><span class="self">self</span>, <span class="ident">N</span>::<span class="ident">zero</span>()) { <span class="kw">if</span> <span class="kw">let</span> <span class="prelude-val">Some</span>(<span class="ident">axis</span>) <span class="op">=</span> <span class="ident">Unit</span>::<span class="ident">try_new</span>(<span class="self">self</span>.<span class="ident">vector</span>().<span class="ident">clone_owned</span>(), <span class="ident">N</span>::<span class="ident">zero</span>()) { <span class="kw">let</span> <span class="ident">angle</span> <span class="op">=</span> <span class="ident">q</span>.<span class="ident">angle</span>() <span class="op">/</span> <span class="kw">crate</span>::<span class="ident">convert</span>(<span class="number">2.0f64</span>); (<span class="ident">n</span>, <span class="ident">angle</span>, <span class="prelude-val">Some</span>(<span class="ident">axis</span>)) } <span class="kw">else</span> { (<span class="ident">n</span>, <span class="ident">N</span>::<span class="ident">zero</span>(), <span class="prelude-val">None</span>) } } <span class="kw">else</span> { (<span class="ident">N</span>::<span class="ident">zero</span>(), <span class="ident">N</span>::<span class="ident">zero</span>(), <span class="prelude-val">None</span>) } } <span class="doccomment">/// Compute the natural logarithm of a quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(2.0, 5.0, 0.0, 0.0);</span> <span class="doccomment">/// assert_relative_eq!(q.ln(), Quaternion::new(1.683647, 1.190289, 0.0, 0.0), epsilon = 1.0e-6)</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">ln</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="ident">n</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">norm</span>(); <span class="kw">let</span> <span class="ident">v</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">vector</span>(); <span class="kw">let</span> <span class="ident">s</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">scalar</span>(); <span class="self">Self</span>::<span class="ident">from_parts</span>(<span class="ident">n</span>.<span class="ident">ln</span>(), <span class="ident">v</span>.<span class="ident">normalize</span>() <span class="op">*</span> (<span class="ident">s</span> <span class="op">/</span> <span class="ident">n</span>).<span class="ident">acos</span>()) } <span class="doccomment">/// Compute the exponential of a quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0);</span> <span class="doccomment">/// assert_relative_eq!(q.exp(), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5)</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">exp</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">self</span>.<span class="ident">exp_eps</span>(<span class="ident">N</span>::<span class="ident">default_epsilon</span>()) } <span class="doccomment">/// Compute the exponential of a quaternion. Returns the identity if the vector part of this quaternion</span> <span class="doccomment">/// has a norm smaller than `eps`.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0);</span> <span class="doccomment">/// assert_relative_eq!(q.exp_eps(1.0e-6), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5);</span> <span class="doccomment">///</span> <span class="doccomment">/// // Singular case.</span> <span class="doccomment">/// let q = Quaternion::new(0.0000001, 0.0, 0.0, 0.0);</span> <span class="doccomment">/// assert_eq!(q.exp_eps(1.0e-6), Quaternion::identity());</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">exp_eps</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">eps</span>: <span class="ident">N</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="ident">v</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">vector</span>(); <span class="kw">let</span> <span class="ident">nn</span> <span class="op">=</span> <span class="ident">v</span>.<span class="ident">norm_squared</span>(); <span class="kw">if</span> <span class="ident">nn</span> <span class="op"><</span><span class="op">=</span> <span class="ident">eps</span> <span class="op">*</span> <span class="ident">eps</span> { <span class="self">Self</span>::<span class="ident">identity</span>() } <span class="kw">else</span> { <span class="kw">let</span> <span class="ident">w_exp</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">scalar</span>().<span class="ident">exp</span>(); <span class="kw">let</span> <span class="ident">n</span> <span class="op">=</span> <span class="ident">nn</span>.<span class="ident">sqrt</span>(); <span class="kw">let</span> <span class="ident">nv</span> <span class="op">=</span> <span class="ident">v</span> <span class="op">*</span> (<span class="ident">w_exp</span> <span class="op">*</span> <span class="ident">n</span>.<span class="ident">sin</span>() <span class="op">/</span> <span class="ident">n</span>); <span class="self">Self</span>::<span class="ident">from_parts</span>(<span class="ident">w_exp</span> <span class="op">*</span> <span class="ident">n</span>.<span class="ident">cos</span>(), <span class="ident">nv</span>) } } <span class="doccomment">/// Raise the quaternion to a given floating power.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// assert_relative_eq!(q.powf(1.5), Quaternion::new( -6.2576659, 4.1549037, 6.2323556, 8.3098075), epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">powf</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">n</span>: <span class="ident">N</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { (<span class="self">self</span>.<span class="ident">ln</span>() <span class="op">*</span> <span class="ident">n</span>).<span class="ident">exp</span>() } <span class="doccomment">/// Transforms this quaternion into its 4D vector form (Vector part, Scalar part).</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{Quaternion, Vector4};</span> <span class="doccomment">/// let mut q = Quaternion::identity();</span> <span class="doccomment">/// *q.as_vector_mut() = Vector4::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// assert!(q.i == 1.0 && q.j == 2.0 && q.k == 3.0 && q.w == 4.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">as_vector_mut</span>(<span class="kw-2">&</span><span class="kw-2">mut</span> <span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="kw-2">&</span><span class="kw-2">mut</span> <span class="ident">Vector4</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="kw-2">&</span><span class="kw-2">mut</span> <span class="self">self</span>.<span class="ident">coords</span> } <span class="doccomment">/// The mutable vector part `(i, j, k)` of this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{Quaternion, Vector4};</span> <span class="doccomment">/// let mut q = Quaternion::identity();</span> <span class="doccomment">/// {</span> <span class="doccomment">/// let mut v = q.vector_mut();</span> <span class="doccomment">/// v[0] = 2.0;</span> <span class="doccomment">/// v[1] = 3.0;</span> <span class="doccomment">/// v[2] = 4.0;</span> <span class="doccomment">/// }</span> <span class="doccomment">/// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">vector_mut</span>( <span class="kw-2">&</span><span class="kw-2">mut</span> <span class="self">self</span>, ) <span class="op">-</span><span class="op">></span> <span class="ident">MatrixSliceMut</span><span class="op"><</span><span class="ident">N</span>, <span class="ident">U3</span>, <span class="ident">U1</span>, <span class="ident">RStride</span><span class="op"><</span><span class="ident">N</span>, <span class="ident">U4</span>, <span class="ident">U1</span><span class="op">></span>, <span class="ident">CStride</span><span class="op"><</span><span class="ident">N</span>, <span class="ident">U4</span>, <span class="ident">U1</span><span class="op">></span><span class="op">></span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">fixed_rows_mut</span>::<span class="op"><</span><span class="ident">U3</span><span class="op">></span>(<span class="number">0</span>) } <span class="doccomment">/// Replaces this quaternion by its conjugate.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// q.conjugate_mut();</span> <span class="doccomment">/// assert!(q.i == -2.0 && q.j == -3.0 && q.k == -4.0 && q.w == 1.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">conjugate_mut</span>(<span class="kw-2">&</span><span class="kw-2">mut</span> <span class="self">self</span>) { <span class="self">self</span>.<span class="ident">coords</span>[<span class="number">0</span>] <span class="op">=</span> <span class="op">-</span><span class="self">self</span>.<span class="ident">coords</span>[<span class="number">0</span>]; <span class="self">self</span>.<span class="ident">coords</span>[<span class="number">1</span>] <span class="op">=</span> <span class="op">-</span><span class="self">self</span>.<span class="ident">coords</span>[<span class="number">1</span>]; <span class="self">self</span>.<span class="ident">coords</span>[<span class="number">2</span>] <span class="op">=</span> <span class="op">-</span><span class="self">self</span>.<span class="ident">coords</span>[<span class="number">2</span>]; } <span class="doccomment">/// Inverts this quaternion in-place if it is not zero.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">///</span> <span class="doccomment">/// assert!(q.try_inverse_mut());</span> <span class="doccomment">/// assert_relative_eq!(q * Quaternion::new(1.0, 2.0, 3.0, 4.0), Quaternion::identity());</span> <span class="doccomment">///</span> <span class="doccomment">/// //Non-invertible case</span> <span class="doccomment">/// let mut q = Quaternion::new(0.0, 0.0, 0.0, 0.0);</span> <span class="doccomment">/// assert!(!q.try_inverse_mut());</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">try_inverse_mut</span>(<span class="kw-2">&</span><span class="kw-2">mut</span> <span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">bool</span> { <span class="kw">let</span> <span class="ident">norm_squared</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">norm_squared</span>(); <span class="kw">if</span> <span class="macro">relative_eq</span><span class="macro">!</span>(<span class="kw-2">&</span><span class="ident">norm_squared</span>, <span class="kw-2">&</span><span class="ident">N</span>::<span class="ident">zero</span>()) { <span class="bool-val">false</span> } <span class="kw">else</span> { <span class="self">self</span>.<span class="ident">conjugate_mut</span>(); <span class="self">self</span>.<span class="ident">coords</span> <span class="op">/</span><span class="op">=</span> <span class="ident">norm_squared</span>; <span class="bool-val">true</span> } } <span class="doccomment">/// Normalizes this quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// q.normalize_mut();</span> <span class="doccomment">/// assert_relative_eq!(q.norm(), 1.0);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">normalize_mut</span>(<span class="kw-2">&</span><span class="kw-2">mut</span> <span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">N</span> { <span class="self">self</span>.<span class="ident">coords</span>.<span class="ident">normalize_mut</span>() } <span class="doccomment">/// Calculates square of a quaternion.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">squared</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">self</span> <span class="op">*</span> <span class="self">self</span> } <span class="doccomment">/// Divides quaternion into two.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">half</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">self</span> <span class="op">/</span> <span class="kw">crate</span>::<span class="ident">convert</span>(<span class="number">2.0f64</span>) } <span class="doccomment">/// Calculates square root.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">sqrt</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">self</span>.<span class="ident">powf</span>(<span class="kw">crate</span>::<span class="ident">convert</span>(<span class="number">0.5</span>)) } <span class="doccomment">/// Check if the quaternion is pure.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">is_pure</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">bool</span> { <span class="self">self</span>.<span class="ident">w</span>.<span class="ident">is_zero</span>() } <span class="doccomment">/// Convert quaternion to pure quaternion.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">pure</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">Self</span>::<span class="ident">from_imag</span>(<span class="self">self</span>.<span class="ident">imag</span>()) } <span class="doccomment">/// Left quaternionic division.</span> <span class="doccomment">///</span> <span class="doccomment">/// Calculates B<sup>-1</sup> * A where A = self, B = other.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">left_div</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Option</span><span class="op"><</span><span class="self">Self</span><span class="op">></span> { <span class="ident">other</span>.<span class="ident">try_inverse</span>().<span class="ident">map</span>(<span class="op">|</span><span class="ident">inv</span><span class="op">|</span> <span class="ident">inv</span> <span class="op">*</span> <span class="self">self</span>) } <span class="doccomment">/// Right quaternionic division.</span> <span class="doccomment">///</span> <span class="doccomment">/// Calculates A * B<sup>-1</sup> where A = self, B = other.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let a = Quaternion::new(0.0, 1.0, 2.0, 3.0);</span> <span class="doccomment">/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);</span> <span class="doccomment">/// let result = a.right_div(&b).unwrap();</span> <span class="doccomment">/// let expected = Quaternion::new(0.4, 0.13333333333333336, -0.4666666666666667, 0.26666666666666666);</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">right_div</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Option</span><span class="op"><</span><span class="self">Self</span><span class="op">></span> { <span class="ident">other</span>.<span class="ident">try_inverse</span>().<span class="ident">map</span>(<span class="op">|</span><span class="ident">inv</span><span class="op">|</span> <span class="self">self</span> <span class="op">*</span> <span class="ident">inv</span>) } <span class="doccomment">/// Calculates the quaternionic cosinus.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let expected = Quaternion::new(58.93364616794395, -34.086183690465596, -51.1292755356984, -68.17236738093119);</span> <span class="doccomment">/// let result = input.cos();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">cos</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="ident">z</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">imag</span>().<span class="ident">magnitude</span>(); <span class="kw">let</span> <span class="ident">w</span> <span class="op">=</span> <span class="op">-</span><span class="self">self</span>.<span class="ident">w</span>.<span class="ident">sin</span>() <span class="op">*</span> <span class="ident">z</span>.<span class="ident">sinhc</span>(); <span class="self">Self</span>::<span class="ident">from_parts</span>(<span class="self">self</span>.<span class="ident">w</span>.<span class="ident">cos</span>() <span class="op">*</span> <span class="ident">z</span>.<span class="ident">cosh</span>(), <span class="self">self</span>.<span class="ident">imag</span>() <span class="op">*</span> <span class="ident">w</span>) } <span class="doccomment">/// Calculates the quaternionic arccosinus.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let result = input.cos().acos();</span> <span class="doccomment">/// assert_relative_eq!(input, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">acos</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="ident">u</span> <span class="op">=</span> <span class="self">Self</span>::<span class="ident">from_imag</span>(<span class="self">self</span>.<span class="ident">imag</span>().<span class="ident">normalize</span>()); <span class="kw">let</span> <span class="ident">identity</span> <span class="op">=</span> <span class="self">Self</span>::<span class="ident">identity</span>(); <span class="kw">let</span> <span class="ident">z</span> <span class="op">=</span> (<span class="self">self</span> <span class="op">+</span> (<span class="self">self</span>.<span class="ident">squared</span>() <span class="op">-</span> <span class="ident">identity</span>).<span class="ident">sqrt</span>()).<span class="ident">ln</span>(); <span class="op">-</span>(<span class="ident">u</span> <span class="op">*</span> <span class="ident">z</span>) } <span class="doccomment">/// Calculates the quaternionic sinus.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let expected = Quaternion::new(91.78371578403467, 21.886486853029176, 32.82973027954377, 43.77297370605835);</span> <span class="doccomment">/// let result = input.sin();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">sin</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="ident">z</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">imag</span>().<span class="ident">magnitude</span>(); <span class="kw">let</span> <span class="ident">w</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">w</span>.<span class="ident">cos</span>() <span class="op">*</span> <span class="ident">z</span>.<span class="ident">sinhc</span>(); <span class="self">Self</span>::<span class="ident">from_parts</span>(<span class="self">self</span>.<span class="ident">w</span>.<span class="ident">sin</span>() <span class="op">*</span> <span class="ident">z</span>.<span class="ident">cosh</span>(), <span class="self">self</span>.<span class="ident">imag</span>() <span class="op">*</span> <span class="ident">w</span>) } <span class="doccomment">/// Calculates the quaternionic arcsinus.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let result = input.sin().asin();</span> <span class="doccomment">/// assert_relative_eq!(input, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">asin</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="ident">u</span> <span class="op">=</span> <span class="self">Self</span>::<span class="ident">from_imag</span>(<span class="self">self</span>.<span class="ident">imag</span>().<span class="ident">normalize</span>()); <span class="kw">let</span> <span class="ident">identity</span> <span class="op">=</span> <span class="self">Self</span>::<span class="ident">identity</span>(); <span class="kw">let</span> <span class="ident">z</span> <span class="op">=</span> ((<span class="ident">u</span> <span class="op">*</span> <span class="self">self</span>) <span class="op">+</span> (<span class="ident">identity</span> <span class="op">-</span> <span class="self">self</span>.<span class="ident">squared</span>()).<span class="ident">sqrt</span>()).<span class="ident">ln</span>(); <span class="op">-</span>(<span class="ident">u</span> <span class="op">*</span> <span class="ident">z</span>) } <span class="doccomment">/// Calculates the quaternionic tangent.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let expected = Quaternion::new(0.00003821631725009489, 0.3713971716439371, 0.5570957574659058, 0.7427943432878743);</span> <span class="doccomment">/// let result = input.tan();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">tan</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">self</span>.<span class="ident">sin</span>().<span class="ident">right_div</span>(<span class="kw-2">&</span><span class="self">self</span>.<span class="ident">cos</span>()).<span class="ident">unwrap</span>() } <span class="doccomment">/// Calculates the quaternionic arctangent.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let result = input.tan().atan();</span> <span class="doccomment">/// assert_relative_eq!(input, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">atan</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="ident">u</span> <span class="op">=</span> <span class="self">Self</span>::<span class="ident">from_imag</span>(<span class="self">self</span>.<span class="ident">imag</span>().<span class="ident">normalize</span>()); <span class="kw">let</span> <span class="ident">num</span> <span class="op">=</span> <span class="ident">u</span> <span class="op">+</span> <span class="self">self</span>; <span class="kw">let</span> <span class="ident">den</span> <span class="op">=</span> <span class="ident">u</span> <span class="op">-</span> <span class="self">self</span>; <span class="kw">let</span> <span class="ident">fr</span> <span class="op">=</span> <span class="ident">num</span>.<span class="ident">right_div</span>(<span class="kw-2">&</span><span class="ident">den</span>).<span class="ident">unwrap</span>(); <span class="kw">let</span> <span class="ident">ln</span> <span class="op">=</span> <span class="ident">fr</span>.<span class="ident">ln</span>(); (<span class="ident">u</span>.<span class="ident">half</span>()) <span class="op">*</span> <span class="ident">ln</span> } <span class="doccomment">/// Calculates the hyperbolic quaternionic sinus.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let expected = Quaternion::new(0.7323376060463428, -0.4482074499805421, -0.6723111749708133, -0.8964148999610843);</span> <span class="doccomment">/// let result = input.sinh();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">sinh</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { (<span class="self">self</span>.<span class="ident">exp</span>() <span class="op">-</span> (<span class="op">-</span><span class="self">self</span>).<span class="ident">exp</span>()).<span class="ident">half</span>() } <span class="doccomment">/// Calculates the hyperbolic quaternionic arcsinus.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let expected = Quaternion::new(2.385889902585242, 0.514052600662788, 0.7710789009941821, 1.028105201325576);</span> <span class="doccomment">/// let result = input.asinh();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">asinh</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="ident">identity</span> <span class="op">=</span> <span class="self">Self</span>::<span class="ident">identity</span>(); (<span class="self">self</span> <span class="op">+</span> (<span class="ident">identity</span> <span class="op">+</span> <span class="self">self</span>.<span class="ident">squared</span>()).<span class="ident">sqrt</span>()).<span class="ident">ln</span>() } <span class="doccomment">/// Calculates the hyperbolic quaternionic cosinus.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let expected = Quaternion::new(0.9615851176369566, -0.3413521745610167, -0.5120282618415251, -0.6827043491220334);</span> <span class="doccomment">/// let result = input.cosh();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">cosh</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { (<span class="self">self</span>.<span class="ident">exp</span>() <span class="op">+</span> (<span class="op">-</span><span class="self">self</span>).<span class="ident">exp</span>()).<span class="ident">half</span>() } <span class="doccomment">/// Calculates the hyperbolic quaternionic arccosinus.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let expected = Quaternion::new(2.4014472020074007, 0.5162761016176176, 0.7744141524264264, 1.0325522032352352);</span> <span class="doccomment">/// let result = input.acosh();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">acosh</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="ident">identity</span> <span class="op">=</span> <span class="self">Self</span>::<span class="ident">identity</span>(); (<span class="self">self</span> <span class="op">+</span> (<span class="self">self</span> <span class="op">+</span> <span class="ident">identity</span>).<span class="ident">sqrt</span>() <span class="op">*</span> (<span class="self">self</span> <span class="op">-</span> <span class="ident">identity</span>).<span class="ident">sqrt</span>()).<span class="ident">ln</span>() } <span class="doccomment">/// Calculates the hyperbolic quaternionic tangent.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let expected = Quaternion::new(1.0248695360556623, -0.10229568178876419, -0.1534435226831464, -0.20459136357752844);</span> <span class="doccomment">/// let result = input.tanh();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">tanh</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">self</span>.<span class="ident">sinh</span>().<span class="ident">right_div</span>(<span class="kw-2">&</span><span class="self">self</span>.<span class="ident">cosh</span>()).<span class="ident">unwrap</span>() } <span class="doccomment">/// Calculates the hyperbolic quaternionic arctangent.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::Quaternion;</span> <span class="doccomment">/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);</span> <span class="doccomment">/// let expected = Quaternion::new(0.03230293287000163, 0.5173453683196951, 0.7760180524795426, 1.0346907366393903);</span> <span class="doccomment">/// let result = input.atanh();</span> <span class="doccomment">/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">atanh</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="ident">identity</span> <span class="op">=</span> <span class="self">Self</span>::<span class="ident">identity</span>(); ((<span class="ident">identity</span> <span class="op">+</span> <span class="self">self</span>).<span class="ident">ln</span>() <span class="op">-</span> (<span class="ident">identity</span> <span class="op">-</span> <span class="self">self</span>).<span class="ident">ln</span>()).<span class="ident">half</span>() } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span> <span class="op">+</span> <span class="ident">AbsDiffEq</span><span class="op"><</span><span class="ident">Epsilon</span> <span class="op">=</span> <span class="ident">N</span><span class="op">></span><span class="op">></span> <span class="ident">AbsDiffEq</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="kw">type</span> <span class="ident">Epsilon</span> <span class="op">=</span> <span class="ident">N</span>; <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">default_epsilon</span>() <span class="op">-</span><span class="op">></span> <span class="self">Self</span>::<span class="ident">Epsilon</span> { <span class="ident">N</span>::<span class="ident">default_epsilon</span>() } <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">abs_diff_eq</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">epsilon</span>: <span class="self">Self</span>::<span class="ident">Epsilon</span>) <span class="op">-</span><span class="op">></span> <span class="ident">bool</span> { <span class="self">self</span>.<span class="ident">as_vector</span>().<span class="ident">abs_diff_eq</span>(<span class="ident">other</span>.<span class="ident">as_vector</span>(), <span class="ident">epsilon</span>) <span class="op">|</span><span class="op">|</span> <span class="comment">// Account for the double-covering of S², i.e. q = -q</span> <span class="self">self</span>.<span class="ident">as_vector</span>().<span class="ident">iter</span>().<span class="ident">zip</span>(<span class="ident">other</span>.<span class="ident">as_vector</span>().<span class="ident">iter</span>()).<span class="ident">all</span>(<span class="op">|</span>(<span class="ident">a</span>, <span class="ident">b</span>)<span class="op">|</span> <span class="ident">a</span>.<span class="ident">abs_diff_eq</span>(<span class="kw-2">&</span><span class="op">-</span><span class="kw-2">*</span><span class="ident">b</span>, <span class="ident">epsilon</span>)) } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span> <span class="op">+</span> <span class="ident">RelativeEq</span><span class="op"><</span><span class="ident">Epsilon</span> <span class="op">=</span> <span class="ident">N</span><span class="op">></span><span class="op">></span> <span class="ident">RelativeEq</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">default_max_relative</span>() <span class="op">-</span><span class="op">></span> <span class="self">Self</span>::<span class="ident">Epsilon</span> { <span class="ident">N</span>::<span class="ident">default_max_relative</span>() } <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">relative_eq</span>( <span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">epsilon</span>: <span class="self">Self</span>::<span class="ident">Epsilon</span>, <span class="ident">max_relative</span>: <span class="self">Self</span>::<span class="ident">Epsilon</span>, ) <span class="op">-</span><span class="op">></span> <span class="ident">bool</span> { <span class="self">self</span>.<span class="ident">as_vector</span>().<span class="ident">relative_eq</span>(<span class="ident">other</span>.<span class="ident">as_vector</span>(), <span class="ident">epsilon</span>, <span class="ident">max_relative</span>) <span class="op">|</span><span class="op">|</span> <span class="comment">// Account for the double-covering of S², i.e. q = -q</span> <span class="self">self</span>.<span class="ident">as_vector</span>().<span class="ident">iter</span>().<span class="ident">zip</span>(<span class="ident">other</span>.<span class="ident">as_vector</span>().<span class="ident">iter</span>()).<span class="ident">all</span>(<span class="op">|</span>(<span class="ident">a</span>, <span class="ident">b</span>)<span class="op">|</span> <span class="ident">a</span>.<span class="ident">relative_eq</span>(<span class="kw-2">&</span><span class="op">-</span><span class="kw-2">*</span><span class="ident">b</span>, <span class="ident">epsilon</span>, <span class="ident">max_relative</span>)) } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span> <span class="op">+</span> <span class="ident">UlpsEq</span><span class="op"><</span><span class="ident">Epsilon</span> <span class="op">=</span> <span class="ident">N</span><span class="op">></span><span class="op">></span> <span class="ident">UlpsEq</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">default_max_ulps</span>() <span class="op">-</span><span class="op">></span> <span class="ident">u32</span> { <span class="ident">N</span>::<span class="ident">default_max_ulps</span>() } <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">ulps_eq</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">epsilon</span>: <span class="self">Self</span>::<span class="ident">Epsilon</span>, <span class="ident">max_ulps</span>: <span class="ident">u32</span>) <span class="op">-</span><span class="op">></span> <span class="ident">bool</span> { <span class="self">self</span>.<span class="ident">as_vector</span>().<span class="ident">ulps_eq</span>(<span class="ident">other</span>.<span class="ident">as_vector</span>(), <span class="ident">epsilon</span>, <span class="ident">max_ulps</span>) <span class="op">|</span><span class="op">|</span> <span class="comment">// Account for the double-covering of S², i.e. q = -q.</span> <span class="self">self</span>.<span class="ident">as_vector</span>().<span class="ident">iter</span>().<span class="ident">zip</span>(<span class="ident">other</span>.<span class="ident">as_vector</span>().<span class="ident">iter</span>()).<span class="ident">all</span>(<span class="op">|</span>(<span class="ident">a</span>, <span class="ident">b</span>)<span class="op">|</span> <span class="ident">a</span>.<span class="ident">ulps_eq</span>(<span class="kw-2">&</span><span class="op">-</span><span class="kw-2">*</span><span class="ident">b</span>, <span class="ident">epsilon</span>, <span class="ident">max_ulps</span>)) } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span> <span class="op">+</span> <span class="ident">fmt</span>::<span class="ident">Display</span><span class="op">></span> <span class="ident">fmt</span>::<span class="ident">Display</span> <span class="kw">for</span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="kw">fn</span> <span class="ident">fmt</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">f</span>: <span class="kw-2">&</span><span class="kw-2">mut</span> <span class="ident">fmt</span>::<span class="ident">Formatter</span>) <span class="op">-</span><span class="op">></span> <span class="ident">fmt</span>::<span class="prelude-ty">Result</span> { <span class="macro">write</span><span class="macro">!</span>( <span class="ident">f</span>, <span class="string">"Quaternion {} − ({}, {}, {})"</span>, <span class="self">self</span>[<span class="number">3</span>], <span class="self">self</span>[<span class="number">0</span>], <span class="self">self</span>[<span class="number">1</span>], <span class="self">self</span>[<span class="number">2</span>] ) } } <span class="doccomment">/// A unit quaternions. May be used to represent a rotation.</span> <span class="kw">pub</span> <span class="kw">type</span> <span class="ident">UnitQuaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> <span class="op">=</span> <span class="ident">Unit</span><span class="op"><</span><span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span><span class="op">></span>; <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span><span class="op">></span> <span class="ident">UnitQuaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="doccomment">/// Moves this unit quaternion into one that owns its data.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="attribute">#[<span class="ident">deprecated</span>( <span class="ident">note</span> <span class="op">=</span> <span class="string">"This method is unnecessary and will be removed in a future release. Use `.clone()` instead."</span> )]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">into_owned</span>(<span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">self</span> } <span class="doccomment">/// Clones this unit quaternion into one that owns its data.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="attribute">#[<span class="ident">deprecated</span>( <span class="ident">note</span> <span class="op">=</span> <span class="string">"This method is unnecessary and will be removed in a future release. Use `.clone()` instead."</span> )]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">clone_owned</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw-2">*</span><span class="self">self</span> } <span class="doccomment">/// The rotation angle in [0; pi] of this unit quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{Unit, UnitQuaternion, Vector3};</span> <span class="doccomment">/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);</span> <span class="doccomment">/// assert_eq!(rot.angle(), 1.78);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">angle</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">N</span> { <span class="kw">let</span> <span class="ident">w</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">quaternion</span>().<span class="ident">scalar</span>().<span class="ident">abs</span>(); <span class="self">self</span>.<span class="ident">quaternion</span>().<span class="ident">imag</span>().<span class="ident">norm</span>().<span class="ident">atan2</span>(<span class="ident">w</span>) <span class="op">*</span> <span class="kw">crate</span>::<span class="ident">convert</span>(<span class="number">2.0f64</span>) } <span class="doccomment">/// The underlying quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// Same as `self.as_ref()`.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Quaternion};</span> <span class="doccomment">/// let axis = UnitQuaternion::identity();</span> <span class="doccomment">/// assert_eq!(*axis.quaternion(), Quaternion::new(1.0, 0.0, 0.0, 0.0));</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">quaternion</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="kw-2">&</span><span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="self">self</span>.<span class="ident">as_ref</span>() } <span class="doccomment">/// Compute the conjugate of this unit quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{Unit, UnitQuaternion, Vector3};</span> <span class="doccomment">/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);</span> <span class="doccomment">/// let conj = rot.conjugate();</span> <span class="doccomment">/// assert_eq!(conj, UnitQuaternion::from_axis_angle(&-axis, 1.78));</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">conjugate</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">Self</span>::<span class="ident">new_unchecked</span>(<span class="self">self</span>.<span class="ident">as_ref</span>().<span class="ident">conjugate</span>()) } <span class="doccomment">/// Inverts this quaternion if it is not zero.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{Unit, UnitQuaternion, Vector3};</span> <span class="doccomment">/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);</span> <span class="doccomment">/// let inv = rot.inverse();</span> <span class="doccomment">/// assert_eq!(rot * inv, UnitQuaternion::identity());</span> <span class="doccomment">/// assert_eq!(inv * rot, UnitQuaternion::identity());</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">inverse</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="self">self</span>.<span class="ident">conjugate</span>() } <span class="doccomment">/// The rotation angle needed to make `self` and `other` coincide.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3};</span> <span class="doccomment">/// let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);</span> <span class="doccomment">/// let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);</span> <span class="doccomment">/// assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">angle_to</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">N</span> { <span class="kw">let</span> <span class="ident">delta</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">rotation_to</span>(<span class="ident">other</span>); <span class="ident">delta</span>.<span class="ident">angle</span>() } <span class="doccomment">/// The unit quaternion needed to make `self` and `other` coincide.</span> <span class="doccomment">///</span> <span class="doccomment">/// The result is such that: `self.rotation_to(other) * self == other`.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3};</span> <span class="doccomment">/// let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);</span> <span class="doccomment">/// let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);</span> <span class="doccomment">/// let rot_to = rot1.rotation_to(&rot2);</span> <span class="doccomment">/// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">rotation_to</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span>{ <span class="ident">other</span> <span class="op">/</span> <span class="self">self</span> } <span class="doccomment">/// Linear interpolation between two unit quaternions.</span> <span class="doccomment">///</span> <span class="doccomment">/// The result is not normalized.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Quaternion};</span> <span class="doccomment">/// let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));</span> <span class="doccomment">/// let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));</span> <span class="doccomment">/// assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(0.9, 0.1, 0.0, 0.0));</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">lerp</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">t</span>: <span class="ident">N</span>) <span class="op">-</span><span class="op">></span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="self">self</span>.<span class="ident">as_ref</span>().<span class="ident">lerp</span>(<span class="ident">other</span>.<span class="ident">as_ref</span>(), <span class="ident">t</span>) } <span class="doccomment">/// Normalized linear interpolation between two unit quaternions.</span> <span class="doccomment">///</span> <span class="doccomment">/// This is the same as `self.lerp` except that the result is normalized.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Quaternion};</span> <span class="doccomment">/// let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));</span> <span class="doccomment">/// let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));</span> <span class="doccomment">/// assert_eq!(q1.nlerp(&q2, 0.1), UnitQuaternion::new_normalize(Quaternion::new(0.9, 0.1, 0.0, 0.0)));</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">nlerp</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">t</span>: <span class="ident">N</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">res</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">lerp</span>(<span class="ident">other</span>, <span class="ident">t</span>); <span class="kw">let</span> <span class="kw">_</span> <span class="op">=</span> <span class="ident">res</span>.<span class="ident">normalize_mut</span>(); <span class="self">Self</span>::<span class="ident">new_unchecked</span>(<span class="ident">res</span>) } <span class="doccomment">/// Spherical linear interpolation between two unit quaternions.</span> <span class="doccomment">///</span> <span class="doccomment">/// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation</span> <span class="doccomment">/// is not well-defined). Use `.try_slerp` instead to avoid the panic.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">slerp</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">t</span>: <span class="ident">N</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="ident">Unit</span>::<span class="ident">new_unchecked</span>(<span class="ident">Quaternion</span>::<span class="ident">from</span>( <span class="ident">Unit</span>::<span class="ident">new_unchecked</span>(<span class="self">self</span>.<span class="ident">coords</span>) .<span class="ident">slerp</span>(<span class="kw-2">&</span><span class="ident">Unit</span>::<span class="ident">new_unchecked</span>(<span class="ident">other</span>.<span class="ident">coords</span>), <span class="ident">t</span>) .<span class="ident">into_inner</span>(), )) } <span class="doccomment">/// Computes the spherical linear interpolation between two unit quaternions or returns `None`</span> <span class="doccomment">/// if both quaternions are approximately 180 degrees apart (in which case the interpolation is</span> <span class="doccomment">/// not well-defined).</span> <span class="doccomment">///</span> <span class="doccomment">/// # Arguments</span> <span class="doccomment">/// * `self`: the first quaternion to interpolate from.</span> <span class="doccomment">/// * `other`: the second quaternion to interpolate toward.</span> <span class="doccomment">/// * `t`: the interpolation parameter. Should be between 0 and 1.</span> <span class="doccomment">/// * `epsilon`: the value below which the sinus of the angle separating both quaternion</span> <span class="doccomment">/// must be to return `None`.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">try_slerp</span>( <span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">t</span>: <span class="ident">N</span>, <span class="ident">epsilon</span>: <span class="ident">N</span>, ) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Option</span><span class="op"><</span><span class="self">Self</span><span class="op">></span> { <span class="ident">Unit</span>::<span class="ident">new_unchecked</span>(<span class="self">self</span>.<span class="ident">coords</span>) .<span class="ident">try_slerp</span>(<span class="kw-2">&</span><span class="ident">Unit</span>::<span class="ident">new_unchecked</span>(<span class="ident">other</span>.<span class="ident">coords</span>), <span class="ident">t</span>, <span class="ident">epsilon</span>) .<span class="ident">map</span>(<span class="op">|</span><span class="ident">q</span><span class="op">|</span> <span class="ident">Unit</span>::<span class="ident">new_unchecked</span>(<span class="ident">Quaternion</span>::<span class="ident">from</span>(<span class="ident">q</span>.<span class="ident">into_inner</span>()))) } <span class="doccomment">/// Compute the conjugate of this unit quaternion in-place.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">conjugate_mut</span>(<span class="kw-2">&</span><span class="kw-2">mut</span> <span class="self">self</span>) { <span class="self">self</span>.<span class="ident">as_mut_unchecked</span>().<span class="ident">conjugate_mut</span>() } <span class="doccomment">/// Inverts this quaternion if it is not zero.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3, Unit};</span> <span class="doccomment">/// let axisangle = Vector3::new(0.1, 0.2, 0.3);</span> <span class="doccomment">/// let mut rot = UnitQuaternion::new(axisangle);</span> <span class="doccomment">/// rot.inverse_mut();</span> <span class="doccomment">/// assert_relative_eq!(rot * UnitQuaternion::new(axisangle), UnitQuaternion::identity());</span> <span class="doccomment">/// assert_relative_eq!(UnitQuaternion::new(axisangle) * rot, UnitQuaternion::identity());</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">inverse_mut</span>(<span class="kw-2">&</span><span class="kw-2">mut</span> <span class="self">self</span>) { <span class="self">self</span>.<span class="ident">as_mut_unchecked</span>().<span class="ident">conjugate_mut</span>() } <span class="doccomment">/// The rotation axis of this unit quaternion or `None` if the rotation is zero.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3, Unit};</span> <span class="doccomment">/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));</span> <span class="doccomment">/// let angle = 1.2;</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&axis, angle);</span> <span class="doccomment">/// assert_eq!(rot.axis(), Some(axis));</span> <span class="doccomment">///</span> <span class="doccomment">/// // Case with a zero angle.</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);</span> <span class="doccomment">/// assert!(rot.axis().is_none());</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">axis</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Option</span><span class="op"><</span><span class="ident">Unit</span><span class="op"><</span><span class="ident">Vector3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span><span class="op">></span><span class="op">></span> { <span class="kw">let</span> <span class="ident">v</span> <span class="op">=</span> <span class="kw">if</span> <span class="self">self</span>.<span class="ident">quaternion</span>().<span class="ident">scalar</span>() <span class="op">></span><span class="op">=</span> <span class="ident">N</span>::<span class="ident">zero</span>() { <span class="self">self</span>.<span class="ident">as_ref</span>().<span class="ident">vector</span>().<span class="ident">clone_owned</span>() } <span class="kw">else</span> { <span class="op">-</span><span class="self">self</span>.<span class="ident">as_ref</span>().<span class="ident">vector</span>() }; <span class="ident">Unit</span>::<span class="ident">try_new</span>(<span class="ident">v</span>, <span class="ident">N</span>::<span class="ident">zero</span>()) } <span class="doccomment">/// The rotation axis of this unit quaternion multiplied by the rotation angle.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3, Unit};</span> <span class="doccomment">/// let axisangle = Vector3::new(0.1, 0.2, 0.3);</span> <span class="doccomment">/// let rot = UnitQuaternion::new(axisangle);</span> <span class="doccomment">/// assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">scaled_axis</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">Vector3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="kw">if</span> <span class="kw">let</span> <span class="prelude-val">Some</span>(<span class="ident">axis</span>) <span class="op">=</span> <span class="self">self</span>.<span class="ident">axis</span>() { <span class="ident">axis</span>.<span class="ident">into_inner</span>() <span class="op">*</span> <span class="self">self</span>.<span class="ident">angle</span>() } <span class="kw">else</span> { <span class="ident">Vector3</span>::<span class="ident">zero</span>() } } <span class="doccomment">/// The rotation axis and angle in ]0, pi] of this unit quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// Returns `None` if the angle is zero.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3, Unit};</span> <span class="doccomment">/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));</span> <span class="doccomment">/// let angle = 1.2;</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&axis, angle);</span> <span class="doccomment">/// assert_eq!(rot.axis_angle(), Some((axis, angle)));</span> <span class="doccomment">///</span> <span class="doccomment">/// // Case with a zero angle.</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);</span> <span class="doccomment">/// assert!(rot.axis_angle().is_none());</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">axis_angle</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="prelude-ty">Option</span><span class="op"><</span>(<span class="ident">Unit</span><span class="op"><</span><span class="ident">Vector3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span><span class="op">></span>, <span class="ident">N</span>)<span class="op">></span> { <span class="self">self</span>.<span class="ident">axis</span>().<span class="ident">map</span>(<span class="op">|</span><span class="ident">axis</span><span class="op">|</span> (<span class="ident">axis</span>, <span class="self">self</span>.<span class="ident">angle</span>())) } <span class="doccomment">/// Compute the exponential of a quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// Note that this function yields a `Quaternion<N>` because it loses the unit property.</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">exp</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="self">self</span>.<span class="ident">as_ref</span>().<span class="ident">exp</span>() } <span class="doccomment">/// Compute the natural logarithm of a quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// Note that this function yields a `Quaternion<N>` because it loses the unit property.</span> <span class="doccomment">/// The vector part of the return value corresponds to the axis-angle representation (divided</span> <span class="doccomment">/// by 2.0) of this unit quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::{Vector3, UnitQuaternion};</span> <span class="doccomment">/// let axisangle = Vector3::new(0.1, 0.2, 0.3);</span> <span class="doccomment">/// let q = UnitQuaternion::new(axisangle);</span> <span class="doccomment">/// assert_relative_eq!(q.ln().vector().into_owned(), axisangle, epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">ln</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">Quaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="kw">if</span> <span class="kw">let</span> <span class="prelude-val">Some</span>(<span class="ident">v</span>) <span class="op">=</span> <span class="self">self</span>.<span class="ident">axis</span>() { <span class="ident">Quaternion</span>::<span class="ident">from_imag</span>(<span class="ident">v</span>.<span class="ident">into_inner</span>() <span class="op">*</span> <span class="self">self</span>.<span class="ident">angle</span>()) } <span class="kw">else</span> { <span class="ident">Quaternion</span>::<span class="ident">zero</span>() } } <span class="doccomment">/// Raise the quaternion to a given floating power.</span> <span class="doccomment">///</span> <span class="doccomment">/// This returns the unit quaternion that identifies a rotation with axis `self.axis()` and</span> <span class="doccomment">/// angle `self.angle() × n`.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3, Unit};</span> <span class="doccomment">/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));</span> <span class="doccomment">/// let angle = 1.2;</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&axis, angle);</span> <span class="doccomment">/// let pow = rot.powf(2.0);</span> <span class="doccomment">/// assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);</span> <span class="doccomment">/// assert_eq!(pow.angle(), 2.4);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">powf</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">n</span>: <span class="ident">N</span>) <span class="op">-</span><span class="op">></span> <span class="self">Self</span> { <span class="kw">if</span> <span class="kw">let</span> <span class="prelude-val">Some</span>(<span class="ident">v</span>) <span class="op">=</span> <span class="self">self</span>.<span class="ident">axis</span>() { <span class="self">Self</span>::<span class="ident">from_axis_angle</span>(<span class="kw-2">&</span><span class="ident">v</span>, <span class="self">self</span>.<span class="ident">angle</span>() <span class="op">*</span> <span class="ident">n</span>) } <span class="kw">else</span> { <span class="self">Self</span>::<span class="ident">identity</span>() } } <span class="doccomment">/// Builds a rotation matrix from this unit quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">///</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use std::f32;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3, Matrix3};</span> <span class="doccomment">/// let q = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);</span> <span class="doccomment">/// let rot = q.to_rotation_matrix();</span> <span class="doccomment">/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,</span> <span class="doccomment">/// 0.5, 0.8660254, 0.0,</span> <span class="doccomment">/// 0.0, 0.0, 1.0);</span> <span class="doccomment">///</span> <span class="doccomment">/// assert_relative_eq!(*rot.matrix(), expected, epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">to_rotation_matrix</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">Rotation</span><span class="op"><</span><span class="ident">N</span>, <span class="ident">U3</span><span class="op">></span> { <span class="kw">let</span> <span class="ident">i</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">as_ref</span>()[<span class="number">0</span>]; <span class="kw">let</span> <span class="ident">j</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">as_ref</span>()[<span class="number">1</span>]; <span class="kw">let</span> <span class="ident">k</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">as_ref</span>()[<span class="number">2</span>]; <span class="kw">let</span> <span class="ident">w</span> <span class="op">=</span> <span class="self">self</span>.<span class="ident">as_ref</span>()[<span class="number">3</span>]; <span class="kw">let</span> <span class="ident">ww</span> <span class="op">=</span> <span class="ident">w</span> <span class="op">*</span> <span class="ident">w</span>; <span class="kw">let</span> <span class="ident">ii</span> <span class="op">=</span> <span class="ident">i</span> <span class="op">*</span> <span class="ident">i</span>; <span class="kw">let</span> <span class="ident">jj</span> <span class="op">=</span> <span class="ident">j</span> <span class="op">*</span> <span class="ident">j</span>; <span class="kw">let</span> <span class="ident">kk</span> <span class="op">=</span> <span class="ident">k</span> <span class="op">*</span> <span class="ident">k</span>; <span class="kw">let</span> <span class="ident">ij</span> <span class="op">=</span> <span class="ident">i</span> <span class="op">*</span> <span class="ident">j</span> <span class="op">*</span> <span class="kw">crate</span>::<span class="ident">convert</span>(<span class="number">2.0f64</span>); <span class="kw">let</span> <span class="ident">wk</span> <span class="op">=</span> <span class="ident">w</span> <span class="op">*</span> <span class="ident">k</span> <span class="op">*</span> <span class="kw">crate</span>::<span class="ident">convert</span>(<span class="number">2.0f64</span>); <span class="kw">let</span> <span class="ident">wj</span> <span class="op">=</span> <span class="ident">w</span> <span class="op">*</span> <span class="ident">j</span> <span class="op">*</span> <span class="kw">crate</span>::<span class="ident">convert</span>(<span class="number">2.0f64</span>); <span class="kw">let</span> <span class="ident">ik</span> <span class="op">=</span> <span class="ident">i</span> <span class="op">*</span> <span class="ident">k</span> <span class="op">*</span> <span class="kw">crate</span>::<span class="ident">convert</span>(<span class="number">2.0f64</span>); <span class="kw">let</span> <span class="ident">jk</span> <span class="op">=</span> <span class="ident">j</span> <span class="op">*</span> <span class="ident">k</span> <span class="op">*</span> <span class="kw">crate</span>::<span class="ident">convert</span>(<span class="number">2.0f64</span>); <span class="kw">let</span> <span class="ident">wi</span> <span class="op">=</span> <span class="ident">w</span> <span class="op">*</span> <span class="ident">i</span> <span class="op">*</span> <span class="kw">crate</span>::<span class="ident">convert</span>(<span class="number">2.0f64</span>); <span class="ident">Rotation</span>::<span class="ident">from_matrix_unchecked</span>(<span class="ident">Matrix3</span>::<span class="ident">new</span>( <span class="ident">ww</span> <span class="op">+</span> <span class="ident">ii</span> <span class="op">-</span> <span class="ident">jj</span> <span class="op">-</span> <span class="ident">kk</span>, <span class="ident">ij</span> <span class="op">-</span> <span class="ident">wk</span>, <span class="ident">wj</span> <span class="op">+</span> <span class="ident">ik</span>, <span class="ident">wk</span> <span class="op">+</span> <span class="ident">ij</span>, <span class="ident">ww</span> <span class="op">-</span> <span class="ident">ii</span> <span class="op">+</span> <span class="ident">jj</span> <span class="op">-</span> <span class="ident">kk</span>, <span class="ident">jk</span> <span class="op">-</span> <span class="ident">wi</span>, <span class="ident">ik</span> <span class="op">-</span> <span class="ident">wj</span>, <span class="ident">wi</span> <span class="op">+</span> <span class="ident">jk</span>, <span class="ident">ww</span> <span class="op">-</span> <span class="ident">ii</span> <span class="op">-</span> <span class="ident">jj</span> <span class="op">+</span> <span class="ident">kk</span>, )) } <span class="doccomment">/// Converts this unit quaternion into its equivalent Euler angles.</span> <span class="doccomment">///</span> <span class="doccomment">/// The angles are produced in the form (roll, pitch, yaw).</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="attribute">#[<span class="ident">deprecated</span>(<span class="ident">note</span> <span class="op">=</span> <span class="string">"This is renamed to use `.euler_angles()`."</span>)]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">to_euler_angles</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> (<span class="ident">N</span>, <span class="ident">N</span>, <span class="ident">N</span>) { <span class="self">self</span>.<span class="ident">euler_angles</span>() } <span class="doccomment">/// Retrieves the euler angles corresponding to this unit quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// The angles are produced in the form (roll, pitch, yaw).</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use nalgebra::UnitQuaternion;</span> <span class="doccomment">/// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);</span> <span class="doccomment">/// let euler = rot.euler_angles();</span> <span class="doccomment">/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);</span> <span class="doccomment">/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);</span> <span class="doccomment">/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">euler_angles</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> (<span class="ident">N</span>, <span class="ident">N</span>, <span class="ident">N</span>) { <span class="self">self</span>.<span class="ident">to_rotation_matrix</span>().<span class="ident">euler_angles</span>() } <span class="doccomment">/// Converts this unit quaternion into its equivalent homogeneous transformation matrix.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">///</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use std::f32;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3, Matrix4};</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);</span> <span class="doccomment">/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,</span> <span class="doccomment">/// 0.5, 0.8660254, 0.0, 0.0,</span> <span class="doccomment">/// 0.0, 0.0, 1.0, 0.0,</span> <span class="doccomment">/// 0.0, 0.0, 0.0, 1.0);</span> <span class="doccomment">///</span> <span class="doccomment">/// assert_relative_eq!(rot.to_homogeneous(), expected, epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">to_homogeneous</span>(<span class="kw-2">&</span><span class="self">self</span>) <span class="op">-</span><span class="op">></span> <span class="ident">Matrix4</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="self">self</span>.<span class="ident">to_rotation_matrix</span>().<span class="ident">to_homogeneous</span>() } <span class="doccomment">/// Rotate a point by this unit quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// This is the same as the multiplication `self * pt`.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">///</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use std::f32;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3, Point3};</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);</span> <span class="doccomment">/// let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));</span> <span class="doccomment">///</span> <span class="doccomment">/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">transform_point</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">pt</span>: <span class="kw-2">&</span><span class="ident">Point3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span>) <span class="op">-</span><span class="op">></span> <span class="ident">Point3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="self">self</span> <span class="op">*</span> <span class="ident">pt</span> } <span class="doccomment">/// Rotate a vector by this unit quaternion.</span> <span class="doccomment">///</span> <span class="doccomment">/// This is the same as the multiplication `self * v`.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">///</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use std::f32;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3};</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);</span> <span class="doccomment">/// let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));</span> <span class="doccomment">///</span> <span class="doccomment">/// assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">transform_vector</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">v</span>: <span class="kw-2">&</span><span class="ident">Vector3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span>) <span class="op">-</span><span class="op">></span> <span class="ident">Vector3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="self">self</span> <span class="op">*</span> <span class="ident">v</span> } <span class="doccomment">/// Rotate a point by the inverse of this unit quaternion. This may be</span> <span class="doccomment">/// cheaper than inverting the unit quaternion and transforming the</span> <span class="doccomment">/// point.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">///</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use std::f32;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3, Point3};</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);</span> <span class="doccomment">/// let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));</span> <span class="doccomment">///</span> <span class="doccomment">/// assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">inverse_transform_point</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">pt</span>: <span class="kw-2">&</span><span class="ident">Point3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span>) <span class="op">-</span><span class="op">></span> <span class="ident">Point3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="comment">// FIXME: would it be useful performancewise not to call inverse explicitly (i-e. implement</span> <span class="comment">// the inverse transformation explicitly here) ?</span> <span class="self">self</span>.<span class="ident">inverse</span>() <span class="op">*</span> <span class="ident">pt</span> } <span class="doccomment">/// Rotate a vector by the inverse of this unit quaternion. This may be</span> <span class="doccomment">/// cheaper than inverting the unit quaternion and transforming the</span> <span class="doccomment">/// vector.</span> <span class="doccomment">///</span> <span class="doccomment">/// # Example</span> <span class="doccomment">///</span> <span class="doccomment">/// ```</span> <span class="doccomment">/// # #[macro_use] extern crate approx;</span> <span class="doccomment">/// # use std::f32;</span> <span class="doccomment">/// # use nalgebra::{UnitQuaternion, Vector3};</span> <span class="doccomment">/// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);</span> <span class="doccomment">/// let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));</span> <span class="doccomment">///</span> <span class="doccomment">/// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);</span> <span class="doccomment">/// ```</span> <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">inverse_transform_vector</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">v</span>: <span class="kw-2">&</span><span class="ident">Vector3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span>) <span class="op">-</span><span class="op">></span> <span class="ident">Vector3</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="self">self</span>.<span class="ident">inverse</span>() <span class="op">*</span> <span class="ident">v</span> } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span> <span class="op">+</span> <span class="ident">fmt</span>::<span class="ident">Display</span><span class="op">></span> <span class="ident">fmt</span>::<span class="ident">Display</span> <span class="kw">for</span> <span class="ident">UnitQuaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="kw">fn</span> <span class="ident">fmt</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">f</span>: <span class="kw-2">&</span><span class="kw-2">mut</span> <span class="ident">fmt</span>::<span class="ident">Formatter</span>) <span class="op">-</span><span class="op">></span> <span class="ident">fmt</span>::<span class="prelude-ty">Result</span> { <span class="kw">if</span> <span class="kw">let</span> <span class="prelude-val">Some</span>(<span class="ident">axis</span>) <span class="op">=</span> <span class="self">self</span>.<span class="ident">axis</span>() { <span class="kw">let</span> <span class="ident">axis</span> <span class="op">=</span> <span class="ident">axis</span>.<span class="ident">into_inner</span>(); <span class="macro">write</span><span class="macro">!</span>( <span class="ident">f</span>, <span class="string">"UnitQuaternion angle: {} − axis: ({}, {}, {})"</span>, <span class="self">self</span>.<span class="ident">angle</span>(), <span class="ident">axis</span>[<span class="number">0</span>], <span class="ident">axis</span>[<span class="number">1</span>], <span class="ident">axis</span>[<span class="number">2</span>] ) } <span class="kw">else</span> { <span class="macro">write</span><span class="macro">!</span>( <span class="ident">f</span>, <span class="string">"UnitQuaternion angle: {} − axis: (undefined)"</span>, <span class="self">self</span>.<span class="ident">angle</span>() ) } } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span> <span class="op">+</span> <span class="ident">AbsDiffEq</span><span class="op"><</span><span class="ident">Epsilon</span> <span class="op">=</span> <span class="ident">N</span><span class="op">></span><span class="op">></span> <span class="ident">AbsDiffEq</span> <span class="kw">for</span> <span class="ident">UnitQuaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="kw">type</span> <span class="ident">Epsilon</span> <span class="op">=</span> <span class="ident">N</span>; <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">default_epsilon</span>() <span class="op">-</span><span class="op">></span> <span class="self">Self</span>::<span class="ident">Epsilon</span> { <span class="ident">N</span>::<span class="ident">default_epsilon</span>() } <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">abs_diff_eq</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">epsilon</span>: <span class="self">Self</span>::<span class="ident">Epsilon</span>) <span class="op">-</span><span class="op">></span> <span class="ident">bool</span> { <span class="self">self</span>.<span class="ident">as_ref</span>().<span class="ident">abs_diff_eq</span>(<span class="ident">other</span>.<span class="ident">as_ref</span>(), <span class="ident">epsilon</span>) } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span> <span class="op">+</span> <span class="ident">RelativeEq</span><span class="op"><</span><span class="ident">Epsilon</span> <span class="op">=</span> <span class="ident">N</span><span class="op">></span><span class="op">></span> <span class="ident">RelativeEq</span> <span class="kw">for</span> <span class="ident">UnitQuaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">default_max_relative</span>() <span class="op">-</span><span class="op">></span> <span class="self">Self</span>::<span class="ident">Epsilon</span> { <span class="ident">N</span>::<span class="ident">default_max_relative</span>() } <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">relative_eq</span>( <span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">epsilon</span>: <span class="self">Self</span>::<span class="ident">Epsilon</span>, <span class="ident">max_relative</span>: <span class="self">Self</span>::<span class="ident">Epsilon</span>, ) <span class="op">-</span><span class="op">></span> <span class="ident">bool</span> { <span class="self">self</span>.<span class="ident">as_ref</span>() .<span class="ident">relative_eq</span>(<span class="ident">other</span>.<span class="ident">as_ref</span>(), <span class="ident">epsilon</span>, <span class="ident">max_relative</span>) } } <span class="kw">impl</span><span class="op"><</span><span class="ident">N</span>: <span class="ident">RealField</span> <span class="op">+</span> <span class="ident">UlpsEq</span><span class="op"><</span><span class="ident">Epsilon</span> <span class="op">=</span> <span class="ident">N</span><span class="op">></span><span class="op">></span> <span class="ident">UlpsEq</span> <span class="kw">for</span> <span class="ident">UnitQuaternion</span><span class="op"><</span><span class="ident">N</span><span class="op">></span> { <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">default_max_ulps</span>() <span class="op">-</span><span class="op">></span> <span class="ident">u32</span> { <span class="ident">N</span>::<span class="ident">default_max_ulps</span>() } <span class="attribute">#[<span class="ident">inline</span>]</span> <span class="kw">fn</span> <span class="ident">ulps_eq</span>(<span class="kw-2">&</span><span class="self">self</span>, <span class="ident">other</span>: <span class="kw-2">&</span><span class="self">Self</span>, <span class="ident">epsilon</span>: <span class="self">Self</span>::<span class="ident">Epsilon</span>, <span class="ident">max_ulps</span>: <span class="ident">u32</span>) <span class="op">-</span><span class="op">></span> <span class="ident">bool</span> { <span class="self">self</span>.<span class="ident">as_ref</span>().<span class="ident">ulps_eq</span>(<span class="ident">other</span>.<span class="ident">as_ref</span>(), <span class="ident">epsilon</span>, <span class="ident">max_ulps</span>) } } </pre></div> </section><section id="search" class="content hidden"></section><section class="footer"></section><aside id="help" class="hidden"><div><h1 class="hidden">Help</h1><div class="shortcuts"><h2>Keyboard Shortcuts</h2><dl><dt><kbd>?</kbd></dt><dd>Show this help dialog</dd><dt><kbd>S</kbd></dt><dd>Focus the search field</dd><dt><kbd>↑</kbd></dt><dd>Move up in search results</dd><dt><kbd>↓</kbd></dt><dd>Move down in search results</dd><dt><kbd>↹</kbd></dt><dd>Switch tab</dd><dt><kbd>⏎</kbd></dt><dd>Go to active search result</dd><dt><kbd>+</kbd></dt><dd>Expand all sections</dd><dt><kbd>-</kbd></dt><dd>Collapse all sections</dd></dl></div><div class="infos"><h2>Search Tricks</h2><p>Prefix searches with a type followed by a colon (e.g., <code>fn:</code>) to restrict the search to a given type.</p><p>Accepted types are: <code>fn</code>, <code>mod</code>, <code>struct</code>, <code>enum</code>, <code>trait</code>, <code>type</code>, <code>macro</code>, and <code>const</code>.</p><p>Search functions by type signature (e.g., <code>vec -> usize</code> or <code>* -> vec</code>)</p><p>Search multiple things at once by splitting your query with comma (e.g., <code>str,u8</code> or <code>String,struct:Vec,test</code>)</p></div></div></aside><script>window.rootPath = "../../../";window.currentCrate = "nalgebra";</script><script src="../../../aliases.js"></script><script src="../../../main.js"></script><script src="../../../source-script.js"></script><script src="../../../source-files.js"></script><script defer src="../../../search-index.js"></script></body></html>