1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

//! Communication channel with a physical device.
//!
//! The `Device` is one of the most important objects of Vulkan. Creating a `Device` is required
//! before you can create buffers, textures, shaders, etc.
//!
//! Basic example:
//!
//! ```no_run
//! use vulkano::device::Device;
//! use vulkano::device::DeviceExtensions;
//! use vulkano::device::Features;
//! use vulkano::instance::Instance;
//! use vulkano::instance::InstanceExtensions;
//! use vulkano::instance::PhysicalDevice;
//!
//! // Creating the instance. See the documentation of the `instance` module.
//! let instance = match Instance::new(None, &InstanceExtensions::none(), None) {
//!     Ok(i) => i,
//!     Err(err) => panic!("Couldn't build instance: {:?}", err)
//! };
//!
//! // We just choose the first physical device. In a real application you would choose depending
//! // on the capabilities of the physical device and the user's preferences.
//! let physical_device = PhysicalDevice::enumerate(&instance).next().expect("No physical device");
//!
//! // Here is the device-creating code.
//! let device = {
//!     let queue_family = physical_device.queue_families().next().unwrap();
//!     let features = Features::none();
//!     let ext = DeviceExtensions::none();
//!
//!     match Device::new(physical_device, &features, &ext, Some((queue_family, 1.0))) {
//!         Ok(d) => d,
//!         Err(err) => panic!("Couldn't build device: {:?}", err)
//!     }
//! };
//! ```
//!
//! # Features and extensions
//!
//! Two of the parameters that you pass to `Device::new` are the list of the features and the list
//! of extensions to enable on the newly-created device.
//!
//! > **Note**: Device extensions are the same as instance extensions, except for the device.
//! > Features are similar to extensions, except that they are part of the core Vulkan
//! > specifications instead of being separate documents.
//!
//! Some Vulkan capabilities, such as swapchains (that allow you to render on the screen) or
//! geometry shaders for example, require that you enable a certain feature or extension when you
//! create the device. Contrary to OpenGL, you can't use the functions provided by a feature or an
//! extension if you didn't explicitly enable it when creating the device.
//!
//! Not all physical devices support all possible features and extensions. For example mobile
//! devices tend to not support geometry shaders, because their hardware is not capable of it. You
//! can query what is supported with respectively `PhysicalDevice::supported_features` and
//! `DeviceExtensions::supported_by_device`.
//!
//! > **Note**: The fact that you need to manually enable features at initialization also means
//! > that you don't need to worry about a capability not being supported later on in your code.
//!
//! # Queues
//!
//! Each physical device proposes one or more *queues* that are divided in *queue families*. A
//! queue is a thread of execution to which you can submit commands that the GPU will execute.
//!
//! > **Note**: You can think of a queue like a CPU thread. Each queue executes its commands one
//! > after the other, and queues run concurrently. A GPU behaves similarly to the hyper-threading
//! > technology, in the sense that queues will only run partially in parallel.
//!
//! The Vulkan API requires that you specify the list of queues that you are going to use at the
//! same time as when you create the device. This is done in vulkano by passing an iterator where
//! each element is a tuple containing a queue family and a number between 0.0 and 1.0 indicating
//! the priority of execution of the queue relative to the others.
//!
//! TODO: write better doc here
//!
//! The `Device::new` function returns the newly-created device, but also the list of queues.
//!
//! # Extended example
//!
//! TODO: write

use fnv::FnvHasher;
use smallvec::SmallVec;
use std::collections::HashMap;
use std::collections::hash_map::Entry;
use std::error;
use std::fmt;
use std::hash::BuildHasherDefault;
use std::mem;
use std::ops::Deref;
use std::ptr;
use std::sync::Arc;
use std::sync::Mutex;
use std::sync::MutexGuard;
use std::sync::Weak;
use std::ffi::CStr;

use command_buffer::pool::StandardCommandPool;
use descriptor::descriptor_set::StdDescriptorPool;
use instance::Instance;
use instance::PhysicalDevice;
use instance::QueueFamily;
use memory::pool::StdMemoryPool;

use Error;
use OomError;
use SynchronizedVulkanObject;
use VulkanObject;
use VulkanHandle;
use check_errors;
use vk;

pub use self::extensions::DeviceExtensions;
pub use self::extensions::RawDeviceExtensions;
pub use ::features::Features;
mod extensions;

/// Represents a Vulkan context.
pub struct Device {
    instance: Arc<Instance>,
    physical_device: usize,
    device: vk::Device,
    vk: vk::DevicePointers,
    standard_pool: Mutex<Weak<StdMemoryPool>>,
    standard_descriptor_pool: Mutex<Weak<StdDescriptorPool>>,
    standard_command_pools:
        Mutex<HashMap<u32, Weak<StandardCommandPool>, BuildHasherDefault<FnvHasher>>>,
    features: Features,
    extensions: DeviceExtensions,
    active_queue_families: SmallVec<[u32; 8]>,
    allocation_count: Mutex<u32>,
    fence_pool: Mutex<Vec<vk::Fence>>,
    semaphore_pool: Mutex<Vec<vk::Semaphore>>,
    event_pool: Mutex<Vec<vk::Event>>,
}

// The `StandardCommandPool` type doesn't implement Send/Sync, so we have to manually reimplement
// them for the device itself.
unsafe impl Send for Device {
}
unsafe impl Sync for Device {
}

impl Device {
    /// Builds a new Vulkan device for the given physical device.
    ///
    /// You must pass two things when creating a logical device:
    ///
    /// - A list of optional Vulkan features that must be enabled on the device. Note that if a
    ///   feature is not enabled at device creation, you can't use it later even it it's supported
    ///   by the physical device.
    ///
    /// - An iterator to a list of queues to create. Each element of the iterator must indicate
    ///   the family whose queue belongs to and a priority between 0.0 and 1.0 to assign to it.
    ///   A queue with a higher value indicates that the commands will execute faster than on a
    ///   queue with a lower value. Note however that no guarantee can be made on the way the
    ///   priority value is handled by the implementation.
    ///
    /// # Panic
    ///
    /// - Panics if one of the queue families doesn't belong to the given device.
    ///
    // TODO: return Arc<Queue> and handle synchronization in the Queue
    // TODO: should take the PhysicalDevice by value
    pub fn new<'a, I, Ext>(phys: PhysicalDevice, requested_features: &Features, extensions: Ext,
                           queue_families: I)
                           -> Result<(Arc<Device>, QueuesIter), DeviceCreationError>
        where I: IntoIterator<Item = (QueueFamily<'a>, f32)>,
              Ext: Into<RawDeviceExtensions>
    {
        let queue_families = queue_families.into_iter();

        if !phys.supported_features().superset_of(&requested_features) {
            return Err(DeviceCreationError::FeatureNotPresent);
        }

        let vk_i = phys.instance().pointers();

        // this variable will contain the queue family ID and queue ID of each requested queue
        let mut output_queues: SmallVec<[(u32, u32); 8]> = SmallVec::new();

        // Device layers were deprecated in Vulkan 1.0.13, and device layer requests should be
        // ignored by the driver. For backwards compatibility, the spec recommends passing the
        // exact instance layers to the device as well. There's no need to support separate
        // requests at device creation time for legacy drivers: the spec claims that "[at] the
        // time of deprecation there were no known device-only layers."
        //
        // Because there's no way to query the list of layers enabled for an instance, we need
        // to save it alongside the instance. (`vkEnumerateDeviceLayerProperties` should get
        // the right list post-1.0.13, but not pre-1.0.13, so we can't use it here.)
        let layers_ptr = phys.instance()
            .loaded_layers()
            .map(|layer| layer.as_ptr())
            .collect::<SmallVec<[_; 16]>>();

        let extensions = extensions.into();
        let extensions_list = extensions
            .iter()
            .map(|extension| extension.as_ptr())
            .collect::<SmallVec<[_; 16]>>();

        // device creation
        let device = unsafe {
            // each element of `queues` is a `(queue_family, priorities)`
            // each queue family must only have one entry in `queues`
            let mut queues: Vec<(u32, Vec<f32>)> = Vec::with_capacity(phys.queue_families().len());

            for (queue_family, priority) in queue_families {
                // checking the parameters
                assert_eq!(queue_family.physical_device().internal_object(),
                           phys.internal_object());
                if priority < 0.0 || priority > 1.0 {
                    return Err(DeviceCreationError::PriorityOutOfRange);
                }

                // adding to `queues` and `output_queues`
                if let Some(q) = queues.iter_mut().find(|q| q.0 == queue_family.id()) {
                    output_queues.push((queue_family.id(), q.1.len() as u32));
                    q.1.push(priority);
                    if q.1.len() > queue_family.queues_count() {
                        return Err(DeviceCreationError::TooManyQueuesForFamily);
                    }
                    continue;
                }
                queues.push((queue_family.id(), vec![priority]));
                output_queues.push((queue_family.id(), 0));
            }

            // turning `queues` into an array of `vkDeviceQueueCreateInfo` suitable for Vulkan
            let queues = queues
                .iter()
                .map(|&(queue_id, ref priorities)| {
                    vk::DeviceQueueCreateInfo {
                        sType: vk::STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
                        pNext: ptr::null(),
                        flags: 0, // reserved
                        queueFamilyIndex: queue_id,
                        queueCount: priorities.len() as u32,
                        pQueuePriorities: priorities.as_ptr(),
                    }
                })
                .collect::<SmallVec<[_; 16]>>();

            // TODO: The plan regarding `robustBufferAccess` is to check the shaders' code to see
            //       if they can possibly perform out-of-bounds reads and writes. If the user tries
            //       to use a shader that can perform out-of-bounds operations without having
            //       `robustBufferAccess` enabled, an error is returned.
            //
            //       However for the moment this verification isn't performed. In order to be safe,
            //       we always enable the `robustBufferAccess` feature as it is guaranteed to be
            //       supported everywhere.
            //
            //       The only alternative (while waiting for shaders introspection to work) is to
            //       make all shaders depend on `robustBufferAccess`. But since usually the
            //       majority of shaders don't need this feature, it would be very annoying to have
            //       to enable it manually when you don't need it.
            //
            //       Note that if we ever remove this, don't forget to adjust the change in
            //       `Device`'s construction below.
            let features = {
                let mut features = requested_features.clone().into_vulkan_features();
                features.robustBufferAccess = vk::TRUE;
                features
            };

            let infos = vk::DeviceCreateInfo {
                sType: vk::STRUCTURE_TYPE_DEVICE_CREATE_INFO,
                pNext: ptr::null(),
                flags: 0, // reserved
                queueCreateInfoCount: queues.len() as u32,
                pQueueCreateInfos: queues.as_ptr(),
                enabledLayerCount: layers_ptr.len() as u32,
                ppEnabledLayerNames: layers_ptr.as_ptr(),
                enabledExtensionCount: extensions_list.len() as u32,
                ppEnabledExtensionNames: extensions_list.as_ptr(),
                pEnabledFeatures: &features,
            };

            let mut output = mem::uninitialized();
            check_errors(vk_i.CreateDevice(phys.internal_object(),
                                           &infos,
                                           ptr::null(),
                                           &mut output))?;
            output
        };

        // loading the function pointers of the newly-created device
        let vk = vk::DevicePointers::load(|name| unsafe {
                                              vk_i.GetDeviceProcAddr(device, name.as_ptr()) as
                                                  *const _
                                          });

        let mut active_queue_families: SmallVec<[u32; 8]> = SmallVec::new();
        for (queue_family, _) in output_queues.iter() {
            if let None = active_queue_families.iter().find(|&&qf| qf == *queue_family) {
                active_queue_families.push(*queue_family);
            }
        }

        let device =
            Arc::new(Device {
                         instance: phys.instance().clone(),
                         physical_device: phys.index(),
                         device: device,
                         vk: vk,
                         standard_pool: Mutex::new(Weak::new()),
                         standard_descriptor_pool: Mutex::new(Weak::new()),
                         standard_command_pools: Mutex::new(Default::default()),
                         features: Features {
                             // Always enabled ; see above
                             robust_buffer_access: true,
                             ..requested_features.clone()
                         },
                         extensions: (&extensions).into(),
                         active_queue_families,
                         allocation_count: Mutex::new(0),
                         fence_pool: Mutex::new(Vec::new()),
                         semaphore_pool: Mutex::new(Vec::new()),
                         event_pool: Mutex::new(Vec::new()),
                     });

        // Iterator for the produced queues.
        let output_queues = QueuesIter {
            next_queue: 0,
            device: device.clone(),
            families_and_ids: output_queues,
        };

        Ok((device, output_queues))
    }

    /// Grants access to the pointers to the Vulkan functions of the device.
    #[inline]
    pub(crate) fn pointers(&self) -> &vk::DevicePointers {
        &self.vk
    }

    /// Waits until all work on this device has finished. You should never need to call
    /// this function, but it can be useful for debugging or benchmarking purposes.
    ///
    /// > **Note**: This is the Vulkan equivalent of OpenGL's `glFinish`.
    ///
    /// # Safety
    ///
    /// This function is not thread-safe. You must not submit anything to any of the queue
    /// of the device (either explicitly or implicitly, for example with a future's destructor)
    /// while this function is waiting.
    ///
    pub unsafe fn wait(&self) -> Result<(), OomError> {
        check_errors(self.vk.DeviceWaitIdle(self.device))?;
        Ok(())
    }

    /// Returns the instance used to create this device.
    #[inline]
    pub fn instance(&self) -> &Arc<Instance> {
        &self.instance
    }

    /// Returns the physical device that was used to create this device.
    #[inline]
    pub fn physical_device(&self) -> PhysicalDevice {
        PhysicalDevice::from_index(&self.instance, self.physical_device).unwrap()
    }

    /// Returns an iterator to the list of queues families that this device uses.
    ///
    /// > **Note**: Will return `-> impl ExactSizeIterator<Item = QueueFamily>` in the future.
    // TODO: ^
    #[inline]
    pub fn active_queue_families<'a>(&'a self)
                                     -> Box<dyn ExactSizeIterator<Item = QueueFamily<'a>> + 'a> {
        let physical_device = self.physical_device();
        Box::new(self.active_queue_families
                     .iter()
                     .map(move |&id| physical_device.queue_family_by_id(id).unwrap()))
    }

    /// Returns the features that are enabled in the device.
    #[inline]
    pub fn enabled_features(&self) -> &Features {
        &self.features
    }

    /// Returns the list of extensions that have been loaded.
    #[inline]
    pub fn loaded_extensions(&self) -> &DeviceExtensions {
        &self.extensions
    }

    /// Returns the standard memory pool used by default if you don't provide any other pool.
    pub fn standard_pool(me: &Arc<Self>) -> Arc<StdMemoryPool> {
        let mut pool = me.standard_pool.lock().unwrap();

        if let Some(p) = pool.upgrade() {
            return p;
        }

        // The weak pointer is empty, so we create the pool.
        let new_pool = StdMemoryPool::new(me.clone());
        *pool = Arc::downgrade(&new_pool);
        new_pool
    }

    /// Returns the standard descriptor pool used by default if you don't provide any other pool.
    pub fn standard_descriptor_pool(me: &Arc<Self>) -> Arc<StdDescriptorPool> {
        let mut pool = me.standard_descriptor_pool.lock().unwrap();

        if let Some(p) = pool.upgrade() {
            return p;
        }

        // The weak pointer is empty, so we create the pool.
        let new_pool = Arc::new(StdDescriptorPool::new(me.clone()));
        *pool = Arc::downgrade(&new_pool);
        new_pool
    }

    /// Returns the standard command buffer pool used by default if you don't provide any other
    /// pool.
    ///
    /// # Panic
    ///
    /// - Panics if the device and the queue family don't belong to the same physical device.
    ///
    pub fn standard_command_pool(me: &Arc<Self>, queue: QueueFamily) -> Arc<StandardCommandPool> {
        let mut standard_command_pools = me.standard_command_pools.lock().unwrap();

        match standard_command_pools.entry(queue.id()) {
            Entry::Occupied(mut entry) => {
                if let Some(pool) = entry.get().upgrade() {
                    return pool;
                }

                let new_pool = Arc::new(StandardCommandPool::new(me.clone(), queue));
                *entry.get_mut() = Arc::downgrade(&new_pool);
                new_pool
            },
            Entry::Vacant(entry) => {
                let new_pool = Arc::new(StandardCommandPool::new(me.clone(), queue));
                entry.insert(Arc::downgrade(&new_pool));
                new_pool
            },
        }
    }

    /// Used to track the number of allocations on this device.
    ///
    /// To ensure valid usage of the Vulkan API, we cannot call `vkAllocateMemory` when
    /// `maxMemoryAllocationCount` has been exceeded. See the Vulkan specs:
    /// https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html#vkAllocateMemory
    ///
    /// Warning: You should never modify this value, except in `device_memory` module
    pub(crate) fn allocation_count(&self) -> &Mutex<u32> {
        &self.allocation_count
    }

    pub(crate) fn fence_pool(&self) -> &Mutex<Vec<vk::Fence>> {
        &self.fence_pool
    }

    pub(crate) fn semaphore_pool(&self) -> &Mutex<Vec<vk::Semaphore>> {
        &self.semaphore_pool
    }

    pub(crate) fn event_pool(&self) -> &Mutex<Vec<vk::Event>> {
        &self.event_pool
    }

    /// Assigns a human-readable name to `object` for debugging purposes.
    ///
    /// # Panics
    /// * If the `VK_EXT_debug_marker` device extension is not loaded.
    /// * If `object` is not owned by this device.
    pub fn set_object_name<T: VulkanObject + DeviceOwned>(&self, object: &T, name: &CStr) -> Result<(), OomError> {
        assert!(object.device().internal_object() == self.internal_object());
        unsafe { self.set_object_name_raw(T::TYPE, object.internal_object().value(), name) }
    }

    /// Assigns a human-readable name to `object` for debugging purposes.
    ///
    /// # Panics
    /// * If the `VK_EXT_debug_marker` device extension is not loaded.
    ///
    /// # Safety
    /// `object` must be a Vulkan handle owned by this device, and its type must be accurately described by `ty`.
    pub unsafe fn set_object_name_raw(&self, ty: vk::DebugReportObjectTypeEXT, object: u64, name: &CStr) -> Result<(), OomError> {
        let info = vk::DebugMarkerObjectNameInfoEXT {
            sType: vk::STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT,
            pNext: ptr::null(),
            objectType: ty,
            object: object,
            name: name.as_ptr(),
        };
        check_errors(self.vk.DebugMarkerSetObjectNameEXT(self.device, &info))?;
        Ok(())
    }
}

impl fmt::Debug for Device {
    #[inline]
    fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(fmt, "<Vulkan device {:?}>", self.device)
    }
}

unsafe impl VulkanObject for Device {
    type Object = vk::Device;

    const TYPE: vk::DebugReportObjectTypeEXT = vk::DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT;

    #[inline]
    fn internal_object(&self) -> vk::Device {
        self.device
    }
}

impl Drop for Device {
    #[inline]
    fn drop(&mut self) {
        unsafe {
            for &raw_fence in self.fence_pool.lock().unwrap().iter() {
                self.vk.DestroyFence(self.device, raw_fence, ptr::null());
            }
            for &raw_sem in self.semaphore_pool.lock().unwrap().iter() {
                self.vk.DestroySemaphore(self.device, raw_sem, ptr::null());
            }
            for &raw_event in self.event_pool.lock().unwrap().iter() {
                self.vk.DestroyEvent(self.device, raw_event, ptr::null());
            }
            self.vk.DestroyDevice(self.device, ptr::null());
        }
    }
}

/// Implemented on objects that belong to a Vulkan device.
///
/// # Safety
///
/// - `device()` must return the correct device.
///
pub unsafe trait DeviceOwned {
    /// Returns the device that owns `Self`.
    fn device(&self) -> &Arc<Device>;
}

unsafe impl<T> DeviceOwned for T
    where T: Deref,
          T::Target: DeviceOwned
{
    #[inline]
    fn device(&self) -> &Arc<Device> {
        (**self).device()
    }
}

/// Iterator that returns the queues produced when creating a device.
pub struct QueuesIter {
    next_queue: usize,
    device: Arc<Device>,
    families_and_ids: SmallVec<[(u32, u32); 8]>,
}

unsafe impl DeviceOwned for QueuesIter {
    fn device(&self) -> &Arc<Device> {
        &self.device
    }
}

impl Iterator for QueuesIter {
    type Item = Arc<Queue>;

    fn next(&mut self) -> Option<Arc<Queue>> {
        unsafe {
            let &(family, id) = match self.families_and_ids.get(self.next_queue) {
                Some(a) => a,
                None => return None,
            };

            self.next_queue += 1;

            let mut output = mem::uninitialized();
            self.device
                .vk
                .GetDeviceQueue(self.device.device, family, id, &mut output);

            Some(Arc::new(Queue {
                              queue: Mutex::new(output),
                              device: self.device.clone(),
                              family: family,
                              id: id,
                          }))
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.families_and_ids.len().saturating_sub(self.next_queue);
        (len, Some(len))
    }
}

impl ExactSizeIterator for QueuesIter {
}

/// Error that can be returned when creating a device.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DeviceCreationError {
    /// Failed to create the device for an implementation-specific reason.
    InitializationFailed,
    /// You have reached the limit to the number of devices that can be created from the same
    /// physical device.
    TooManyObjects,
    /// Failed to connect to the device.
    DeviceLost,
    /// Some of the requested features are unsupported by the physical device.
    FeatureNotPresent,
    /// Some of the requested device extensions are not supported by the physical device.
    ExtensionNotPresent,
    /// Tried to create too many queues for a given family.
    TooManyQueuesForFamily,
    /// The priority of one of the queues is out of the [0.0; 1.0] range.
    PriorityOutOfRange,
    /// There is no memory available on the host (ie. the CPU, RAM, etc.).
    OutOfHostMemory,
    /// There is no memory available on the device (ie. video memory).
    OutOfDeviceMemory,
}

impl error::Error for DeviceCreationError {
    #[inline]
    fn description(&self) -> &str {
        match *self {
            DeviceCreationError::InitializationFailed => {
                "failed to create the device for an implementation-specific reason"
            },
            DeviceCreationError::OutOfHostMemory => "no memory available on the host",
            DeviceCreationError::OutOfDeviceMemory => {
                "no memory available on the graphical device"
            },
            DeviceCreationError::DeviceLost => {
                "failed to connect to the device"
            },
            DeviceCreationError::TooManyQueuesForFamily => {
                "tried to create too many queues for a given family"
            },
            DeviceCreationError::FeatureNotPresent => {
                "some of the requested features are unsupported by the physical device"
            },
            DeviceCreationError::PriorityOutOfRange => {
                "the priority of one of the queues is out of the [0.0; 1.0] range"
            },
            DeviceCreationError::ExtensionNotPresent => {
                "some of the requested device extensions are not supported by the physical device"
            },
            DeviceCreationError::TooManyObjects => {
                "you have reached the limit to the number of devices that can be created from the
                 same physical device"
            },
        }
    }
}

impl fmt::Display for DeviceCreationError {
    #[inline]
    fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(fmt, "{}", error::Error::description(self))
    }
}

impl From<Error> for DeviceCreationError {
    #[inline]
    fn from(err: Error) -> DeviceCreationError {
        match err {
            Error::InitializationFailed => DeviceCreationError::InitializationFailed,
            Error::OutOfHostMemory => DeviceCreationError::OutOfHostMemory,
            Error::OutOfDeviceMemory => DeviceCreationError::OutOfDeviceMemory,
            Error::DeviceLost => DeviceCreationError::DeviceLost,
            Error::ExtensionNotPresent => DeviceCreationError::ExtensionNotPresent,
            Error::FeatureNotPresent => DeviceCreationError::FeatureNotPresent,
            Error::TooManyObjects => DeviceCreationError::TooManyObjects,
            _ => panic!("Unexpected error value: {}", err as i32),
        }
    }
}

/// Represents a queue where commands can be submitted.
// TODO: should use internal synchronization?
#[derive(Debug)]
pub struct Queue {
    queue: Mutex<vk::Queue>,
    device: Arc<Device>,
    family: u32,
    id: u32, // id within family
}

impl Queue {
    /// Returns the device this queue belongs to.
    #[inline]
    pub fn device(&self) -> &Arc<Device> {
        &self.device
    }

    /// Returns true if this is the same queue as another one.
    #[inline]
    pub fn is_same(&self, other: &Queue) -> bool {
        self.id == other.id && self.family == other.family &&
            self.device.internal_object() == other.device.internal_object()
    }

    /// Returns the family this queue belongs to.
    #[inline]
    pub fn family(&self) -> QueueFamily {
        self.device
            .physical_device()
            .queue_family_by_id(self.family)
            .unwrap()
    }

    /// Returns the index of this queue within its family.
    #[inline]
    pub fn id_within_family(&self) -> u32 {
        self.id
    }

    /// Waits until all work on this queue has finished.
    ///
    /// Just like `Device::wait()`, you shouldn't have to call this function in a typical program.
    #[inline]
    pub fn wait(&self) -> Result<(), OomError> {
        unsafe {
            let vk = self.device.pointers();
            let queue = self.queue.lock().unwrap();
            check_errors(vk.QueueWaitIdle(*queue))?;
            Ok(())
        }
    }
}


unsafe impl DeviceOwned for Queue {
    fn device(&self) -> &Arc<Device> {
        &self.device
    }
}

unsafe impl SynchronizedVulkanObject for Queue {
    type Object = vk::Queue;

    #[inline]
    fn internal_object_guard(&self) -> MutexGuard<vk::Queue> {
        self.queue.lock().unwrap()
    }
}

#[cfg(test)]
mod tests {
    use device::Device;
    use device::DeviceCreationError;
    use device::DeviceExtensions;
    use features::Features;
    use instance;
    use std::sync::Arc;

    #[test]
    fn one_ref() {
        let (mut device, _) = gfx_dev_and_queue!();
        assert!(Arc::get_mut(&mut device).is_some());
    }

    #[test]
    fn too_many_queues() {
        let instance = instance!();
        let physical = match instance::PhysicalDevice::enumerate(&instance).next() {
            Some(p) => p,
            None => return,
        };

        let family = physical.queue_families().next().unwrap();
        let queues = (0 .. family.queues_count() + 1).map(|_| (family, 1.0));

        match Device::new(physical,
                            &Features::none(),
                            &DeviceExtensions::none(),
                            queues) {
            Err(DeviceCreationError::TooManyQueuesForFamily) => return,     // Success
            _ => panic!(),
        };
    }

    #[test]
    fn unsupposed_features() {
        let instance = instance!();
        let physical = match instance::PhysicalDevice::enumerate(&instance).next() {
            Some(p) => p,
            None => return,
        };

        let family = physical.queue_families().next().unwrap();

        let features = Features::all();
        // In the unlikely situation where the device supports everything, we ignore the test.
        if physical.supported_features().superset_of(&features) {
            return;
        }

        match Device::new(physical,
                            &features,
                            &DeviceExtensions::none(),
                            Some((family, 1.0))) {
            Err(DeviceCreationError::FeatureNotPresent) => return,     // Success
            _ => panic!(),
        };
    }

    #[test]
    fn priority_out_of_range() {
        let instance = instance!();
        let physical = match instance::PhysicalDevice::enumerate(&instance).next() {
            Some(p) => p,
            None => return,
        };

        let family = physical.queue_families().next().unwrap();

        match Device::new(physical,
                            &Features::none(),
                            &DeviceExtensions::none(),
                            Some((family, 1.4))) {
            Err(DeviceCreationError::PriorityOutOfRange) => (),     // Success
            _ => panic!(),
        };

        match Device::new(physical,
                            &Features::none(),
                            &DeviceExtensions::none(),
                            Some((family, -0.2))) {
            Err(DeviceCreationError::PriorityOutOfRange) => (),     // Success
            _ => panic!(),
        };
    }
}