#![allow(dead_code)] #![allow(unused_variables)] #![allow(unused_mut)] extern crate cgmath; extern crate image; extern crate nalgebra as na; extern crate quick_xml; extern crate rand; extern crate sfml; extern crate time; use image::{DynamicImage, GenericImage, GenericImageView, Pixel, SubImage}; use sfml::graphics::*; use sfml::graphics::{ Color, RenderTarget, RenderWindow, }; use sfml::system::*; use sfml::system::Vector2 as sfVec2; use sfml::window::*; use sfml::window::{Event, Key, Style}; use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess}; use vulkano::command_buffer::AutoCommandBufferBuilder; use vulkano::descriptor::descriptor_set::PersistentDescriptorSet; use vulkano::device::{Device, DeviceExtensions}; use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice}; use vulkano::pipeline::ComputePipeline; use vulkano::sync::GpuFuture; use vulkano::sync; use std::sync::Arc; use std::fs; use std::path::PathBuf; use std::result; use crate::input::Input; use crate::slider::Slider; use crate::timer::Timer; use na::DimAdd; use std::time::{SystemTime, Duration}; use shade_runner as sr; use std::ffi::CStr; mod slider; mod timer; mod input; mod util; // The container trait for all the shaders trait Effect: Drawable { fn update(&mut self, t: f32, x: f32, y: f32); fn name(&self) -> &str; fn as_drawable(&self) -> &Drawable; } // ======= LARGE MULTISPRITE SHADER DEMO =========== struct Edge<'t> { surface: RenderTexture, bg_sprite: Sprite<'t>, entities: Vec>, shader: Shader<'static>, } impl<'t> Edge<'t> { fn new(bg_texture: &'t Texture, entity_texture: &'t Texture) -> Self { let mut surface = RenderTexture::new(800, 600, false).unwrap(); surface.set_smooth(true); let mut bg_sprite = Sprite::with_texture(bg_texture); bg_sprite.set_position((0., 0.)); let mut entities = Vec::new(); for i in 0..6 { let mut entity = Sprite::with_texture(entity_texture); entity.set_texture_rect(&IntRect::new(96 * i, 0, 96, 96)); entities.push(entity); } let mut shader = Shader::from_file(None, None, Some("resources/shaders/edge.frag")).unwrap(); shader.set_uniform_current_texture("texture"); Self { surface, bg_sprite, entities, shader, } } } impl<'t> Drawable for Edge<'t> { fn draw<'a: 'shader, 'texture, 'shader, 'shader_texture>( &'a self, target: &mut RenderTarget, mut states: RenderStates<'texture, 'shader, 'shader_texture>, ) { states.shader = Some(&self.shader); target.draw_with_renderstates(&Sprite::with_texture(self.surface.texture()), states); } } impl<'t> Effect for Edge<'t> { fn update(&mut self, t: f32, x: f32, y: f32) { self.shader .set_uniform_float("edge_threshold", 1. - (x + y) / 2.); let entities_len = self.entities.len() as f32; for (i, en) in self.entities.iter_mut().enumerate() { let pos = ( (0.25 * (t * i as f32 + (entities_len - i as f32))).cos() * 300. + 350., (0.25 * (t * (entities_len - i as f32) + i as f32)).cos() * 200. + 250., ); en.set_position(pos); } self.surface.clear(&Color::WHITE); self.surface.draw(&self.bg_sprite); for en in &self.entities { self.surface.draw(en); } self.surface.display(); } fn as_drawable(&self) -> &Drawable { self } fn name(&self) -> &str { "edge post-effect" } } // ================================================= fn main() { // Create the vulkan instance, device, and device queue let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap(); let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap(); let (device, mut queues) = Device::new(physical, physical.supported_features(), &DeviceExtensions::none(), [(queue_family, 0.5)].iter().cloned()).unwrap(); let queue = queues.next().unwrap(); println!("Device initialized"); let project_root = std::env::current_dir().expect("failed to get root directory"); let mut vert_path = project_root.clone(); vert_path.push(PathBuf::from("resources/shaders/add.compute")); let shader = sr::load_compute(vert_path).expect("Failed to compile"); let vulkano_entry = sr::parse_compute(&shader).expect("failed to parse"); let x = unsafe { vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.compute) }.unwrap(); // Compile the shader and add it to a pipeline let pipeline = Arc::new({ unsafe { ComputePipeline::new(device.clone(), &x.compute_entry_point( CStr::from_bytes_with_nul_unchecked(b"main\0"), vulkano_entry.compute_layout), &() ).unwrap() } }); // Load up the input image, determine some details let mut img = image::open("resources/images/test.png").unwrap(); let xy = img.dimensions(); let data_length = xy.0*xy.1*4; let pixel_count = img.raw_pixels().len(); println!("Pixel count {}", pixel_count); let mut image_buffer = Vec::new(); if pixel_count != data_length as usize { for i in img.raw_pixels().iter() { if (image_buffer.len() + 1) % 4 == 0 { image_buffer.push(255); } image_buffer.push(*i); } image_buffer.push(255); } else { image_buffer = img.raw_pixels(); } println!("Buffer length {}", image_buffer.len()); println!("Size {:?}", xy); println!("Allocating Buffers..."); { // Pull out the image data and place it in a buffer for the kernel to read from let read_buffer = { let q = ImmutableBuffer::from_data(image_buffer.clone(), BufferUsage::all(), queue.clone()).unwrap(); q.1.flush(); q.0 }; // Pull out the image data and place it in a buffer for the kernel to write to and for us to read from let write_buffer = { let mut buff = image_buffer.iter(); let data_iter = (0 .. data_length).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_data(device.clone(), BufferUsage::all(), image_buffer.clone()).unwrap() }; // A buffer to hold many i32 values to use as settings let settings_buffer = { let vec = vec![xy.0, xy.1]; let mut buff = vec.iter(); let data_iter = (0 .. 2).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; println!("Done"); // Create the data descriptor set for our previously created shader pipeline let mut set = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0) .add_buffer(read_buffer).unwrap() .add_buffer(write_buffer.clone()).unwrap() .add_buffer(settings_buffer.clone()).unwrap() .build().unwrap() ); println!("Running Kernel..."); // The command buffer I think pretty much serves to define what runs where for how many times let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap() .dispatch([xy.0, xy.1, 1], pipeline.clone(), set.clone(), ()).unwrap() .build().unwrap(); // Create a future for running the command buffer and then just fence it let future = sync::now(device.clone()) .then_execute(queue.clone(), command_buffer).unwrap() .then_signal_fence_and_flush().unwrap(); // I think this is redundant and returns immediately future.wait(None).unwrap(); println!("Done running kernel"); // The buffer is sync'd so we can just read straight from the handle let data_buffer_content = write_buffer.read().unwrap(); let p = image::load_from_memory(data_buffer_content.as_slice()).unwrap(); println!("done2"); for y in 0 .. xy.1 { for x in 0 .. xy.0 { let r = data_buffer_content[((xy.0 * y + x) * 4 + 0) as usize] as u8; let g = data_buffer_content[((xy.0 * y + x) * 4 + 1) as usize] as u8; let b = data_buffer_content[((xy.0 * y + x) * 4 + 2) as usize] as u8; let a = data_buffer_content[((xy.0 * y + x) * 4 + 3) as usize] as u8; *image_buffer.get_mut(((xy.0 * y + x) * 4 + 0) as usize).unwrap() = r; *image_buffer.get_mut(((xy.0 * y + x) * 4 + 1) as usize).unwrap() = g; *image_buffer.get_mut(((xy.0 * y + x) * 4 + 2) as usize).unwrap() = b; *image_buffer.get_mut(((xy.0 * y + x) * 4 + 3) as usize).unwrap() = a; img.put_pixel(x, y, image::Rgba([r, g, b, a])) } } } println!("done3"); img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs())); println!("Stdddwafasddfqwefaarting"); let mut window = RenderWindow::new( (900, 900), "Custom drawable", Style::CLOSE, &Default::default(), ); let mut timer = Timer::new(); let mut input = Input::new(); //========================================== let font = Font::from_file("resources/fonts/sansation.ttf").unwrap(); let mut bg_texture = Texture::new(xy.0, xy.1).unwrap(); bg_texture.update_from_pixels(image_buffer.as_slice(), xy.0, xy.1, 0, 0); //let mut bg_texture = Texture::from_file("resources/images/sfml.png").unwrap(); //bg_texture.set_smooth(true); let mut entity_texture = Texture::from_file("resources/images/devices.png").unwrap(); entity_texture.set_smooth(true); let mut effects: [Box; 1] = [ Box::new(Edge::new(&bg_texture, &entity_texture)), ]; let mut current = 0; let text_bg_texture = Texture::from_file("resources/images/text-background.png").unwrap(); let mut text_bg = Sprite::with_texture(&text_bg_texture); text_bg.set_position((0., 520.)); text_bg.set_color(&Color::rgba(255, 255, 255, 200)); //========================================== let mut slider = Slider::new(40.0, None); let step_size: f32 = 0.005; let mut elapsed_time: f32; let mut delta_time: f32; let mut accumulator_time: f32 = 0.0; let mut current_time: f32 = timer.elap_time(); while window.is_open() { while let Some(event) = window.poll_event() { match event { Event::Closed => return, Event::KeyPressed { code, .. } => { if code == Key::Escape { return; } } _ => {} } input.ingest(&event) } if input.is_held(Key::W) { } if input.is_held(Key::A) { } if input.is_held(Key::S) { } if input.is_held(Key::D) { } elapsed_time = timer.elap_time(); delta_time = elapsed_time - current_time; current_time = elapsed_time; if delta_time > 0.02 { delta_time = 0.02; } accumulator_time += delta_time; while (accumulator_time - step_size) >= step_size { accumulator_time -= step_size; } let x = 0.;//window.mouse_position().x as f32 / window.size().x as f32; let y = 0.;//window.mouse_position().y as f32 / window.size().y as f32; effects[current].update(elapsed_time*1.0, x, y); window.clear(&Color::BLACK); window.draw(effects[current].as_drawable()); window.draw(&slider); window.display(); } }