1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* asin(x) * Method : * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... * we approximate asin(x) on [0,0.5] by * asin(x) = x + x*x^2*R(x^2) * where * R(x^2) is a rational approximation of (asin(x)-x)/x^3 * and its remez error is bounded by * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * * For x in [0.5,1] * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; * then for x>0.98 * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) * For x<=0.98, let pio4_hi = pio2_hi/2, then * f = hi part of s; * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) * and * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * */ use super::{fabs, get_high_word, get_low_word, sqrt, with_set_low_word}; const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */ const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */ /* coefficients for R(x^2) */ const P_S0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */ const P_S1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */ const P_S2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */ const P_S3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */ const P_S4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */ const P_S5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */ const Q_S1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */ const Q_S2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */ const Q_S3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */ const Q_S4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ #[inline] fn comp_r(z: f64) -> f64 { let p = z * (P_S0 + z * (P_S1 + z * (P_S2 + z * (P_S3 + z * (P_S4 + z * P_S5))))); let q = 1.0 + z * (Q_S1 + z * (Q_S2 + z * (Q_S3 + z * Q_S4))); p / q } /// Arcsine (f64) /// /// Computes the inverse sine (arc sine) of the argument `x`. /// Arguments to asin must be in the range -1 to 1. /// Returns values in radians, in the range of -pi/2 to pi/2. #[inline] #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn asin(mut x: f64) -> f64 { let z: f64; let r: f64; let s: f64; let hx: u32; let ix: u32; hx = get_high_word(x); ix = hx & 0x7fffffff; /* |x| >= 1 or nan */ if ix >= 0x3ff00000 { let lx: u32; lx = get_low_word(x); if ((ix - 0x3ff00000) | lx) == 0 { /* asin(1) = +-pi/2 with inexact */ return x * PIO2_HI + f64::from_bits(0x3870000000000000); } else { return 0.0 / (x - x); } } /* |x| < 0.5 */ if ix < 0x3fe00000 { /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */ if ix < 0x3e500000 && ix >= 0x00100000 { return x; } else { return x + x * comp_r(x * x); } } /* 1 > |x| >= 0.5 */ z = (1.0 - fabs(x)) * 0.5; s = sqrt(z); r = comp_r(z); if ix >= 0x3fef3333 { /* if |x| > 0.975 */ x = PIO2_HI - (2. * (s + s * r) - PIO2_LO); } else { let f: f64; let c: f64; /* f+c = sqrt(z) */ f = with_set_low_word(s, 0); c = (z - f * f) / (s + f); x = 0.5 * PIO2_HI - (2.0 * s * r - (PIO2_LO - 2.0 * c) - (0.5 * PIO2_HI - 2.0 * f)); } if hx >> 31 != 0 { -x } else { x } }