1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* log(x) * Return the logarithm of x * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Remez algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */ const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */ const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ #[inline] #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn log(mut x: f64) -> f64 { let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54 let mut ui = x.to_bits(); let mut hx: u32 = (ui >> 32) as u32; let mut k: i32 = 0; if (hx < 0x00100000) || ((hx >> 31) != 0) { /* x < 2**-126 */ if ui << 1 == 0 { return -1. / (x * x); /* log(+-0)=-inf */ } if hx >> 31 != 0 { return (x - x) / 0.0; /* log(-#) = NaN */ } /* subnormal number, scale x up */ k -= 54; x *= x1p54; ui = x.to_bits(); hx = (ui >> 32) as u32; } else if hx >= 0x7ff00000 { return x; } else if hx == 0x3ff00000 && ui << 32 == 0 { return 0.; } /* reduce x into [sqrt(2)/2, sqrt(2)] */ hx += 0x3ff00000 - 0x3fe6a09e; k += ((hx >> 20) as i32) - 0x3ff; hx = (hx & 0x000fffff) + 0x3fe6a09e; ui = ((hx as u64) << 32) | (ui & 0xffffffff); x = f64::from_bits(ui); let f: f64 = x - 1.0; let hfsq: f64 = 0.5 * f * f; let s: f64 = f / (2.0 + f); let z: f64 = s * s; let w: f64 = z * z; let t1: f64 = w * (LG2 + w * (LG4 + w * LG6)); let t2: f64 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7))); let r: f64 = t2 + t1; let dk: f64 = k as f64; s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI }