use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess}; use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState}; use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc}; use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue}; use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, RenderPassAbstract, Subpass}; use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily}; use vulkano::pipeline::{ComputePipeline, GraphicsPipeline}; use vulkano::pipeline::viewport::Viewport; use vulkano::sync::{FlushError, GpuFuture}; use vulkano::sync; use vulkano::image::SwapchainImage; use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError}; use vulkano::swapchain; use std::time::SystemTime; use std::sync::Arc; use std::ffi::CStr; use std::path::PathBuf; use shade_runner as sr; use image::{DynamicImage, GenericImage, GenericImageView, ImageBuffer}; use vulkano::descriptor::pipeline_layout::PipelineLayout; use shade_runner::{ComputeLayout, CompileError}; use vulkano::descriptor::descriptor_set::PersistentDescriptorSetBuf; use shaderc::CompileOptions; use winit::{Event, EventsLoop, Window, WindowBuilder, WindowEvent}; use vulkano_win::VkSurfaceBuild; use vulkano::SafeDeref; fn main() { let instance = { let extensions = vulkano_win::required_extensions(); Instance::new(None, &extensions, None).unwrap() }; let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); // The objective of this example is to draw a triangle on a window. To do so, we first need to // create the window. // // This is done by creating a `WindowBuilder` from the `winit` crate, then calling the // `build_vk_surface` method provided by the `VkSurfaceBuild` trait from `vulkano_win`. If you // ever get an error about `build_vk_surface` being undefined in one of your projects, this // probably means that you forgot to import this trait. // // This returns a `vulkano::swapchain::Surface` object that contains both a cross-platform winit // window and a cross-platform Vulkan surface that represents the surface of the window. let mut events_loop = EventsLoop::new(); let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap(); let window = surface.window(); let queue_family = physical.queue_families().find(|&q| { // We take the first queue that supports drawing to our window. q.supports_graphics() && surface.is_supported(q).unwrap_or(false) && q.supports_compute() }).unwrap(); let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() }; let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext, [(queue_family, 0.5)].iter().cloned()).unwrap(); let queue = queues.next().unwrap(); // Before we can draw on the surface, we have to create what is called a swapchain. Creating // a swapchain allocates the color buffers that will contain the image that will ultimately // be visible on the screen. These images are returned alongside with the swapchain. let (mut swapchain, images) = { // Querying the capabilities of the surface. When we create the swapchain we can only // pass values that are allowed by the capabilities. let capabilities = surface.capabilities(physical).unwrap(); let usage = capabilities.supported_usage_flags; // The alpha mode indicates how the alpha value of the final image will behave. For example // you can choose whether the window will be opaque or transparent. let alpha = capabilities.supported_composite_alpha.iter().next().unwrap(); // Choosing the internal format that the images will have. let format = capabilities.supported_formats[0].0; // The dimensions of the window, only used to initially setup the swapchain. // NOTE: // On some drivers the swapchain dimensions are specified by `caps.current_extent` and the // swapchain size must use these dimensions. // These dimensions are always the same as the window dimensions // // However other drivers dont specify a value i.e. `caps.current_extent` is `None` // These drivers will allow anything but the only sensible value is the window dimensions. // // Because for both of these cases, the swapchain needs to be the window dimensions, we just use that. let initial_dimensions = if let Some(dimensions) = window.get_inner_size() { // convert to physical pixels let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { // The window no longer exists so exit the application. return; }; // Please take a look at the docs for the meaning of the parameters we didn't mention. Swapchain::new(device.clone(), surface.clone(), capabilities.min_image_count, format, initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha, PresentMode::Fifo, true, None).unwrap() }; // We now create a buffer that will store the shape of our triangle. let vertex_buffer = { #[derive(Default, Debug, Clone)] struct Vertex { position: [f32; 2] } vulkano::impl_vertex!(Vertex, position); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), [ Vertex { position: [-0.5, -0.25] }, Vertex { position: [0.0, 0.5] }, Vertex { position: [0.25, -0.1] } ].iter().cloned()).unwrap() }; mod vs { vulkano_shaders::shader! { ty: "vertex", src: " #version 450 layout(location = 0) in vec2 position; void main() { gl_Position = vec4(position, 0.0, 1.0); }" } } mod fs { vulkano_shaders::shader! { ty: "fragment", src: " #version 450 layout(location = 0) out vec4 f_color; void main() { f_color = vec4(1.0, 0.0, 0.0, 1.0); } " } } let vs = vs::Shader::load(device.clone()).unwrap(); let fs = fs::Shader::load(device.clone()).unwrap(); // The next step is to create a *render pass*, which is an object that describes where the // output of the graphics pipeline will go. It describes the layout of the images // where the colors, depth and/or stencil information will be written. let render_pass = Arc::new(vulkano::single_pass_renderpass!( device.clone(), attachments: { // `color` is a custom name we give to the first and only attachment. color: { // `load: Clear` means that we ask the GPU to clear the content of this // attachment at the start of the drawing. load: Clear, // `store: Store` means that we ask the GPU to store the output of the draw // in the actual image. We could also ask it to discard the result. store: Store, // `format: ` indicates the type of the format of the image. This has to // be one of the types of the `vulkano::format` module (or alternatively one // of your structs that implements the `FormatDesc` trait). Here we use the // same format as the swapchain. format: swapchain.format(), // TODO: samples: 1, } }, pass: { // We use the attachment named `color` as the one and only color attachment. color: [color], // No depth-stencil attachment is indicated with empty brackets. depth_stencil: {} } ).unwrap()); // Before we draw we have to create what is called a pipeline. This is similar to an OpenGL // program, but much more specific. let pipeline = Arc::new(GraphicsPipeline::start() // We need to indicate the layout of the vertices. // The type `SingleBufferDefinition` actually contains a template parameter corresponding // to the type of each vertex. But in this code it is automatically inferred. .vertex_input_single_buffer() // A Vulkan shader can in theory contain multiple entry points, so we have to specify // which one. The `main` word of `main_entry_point` actually corresponds to the name of // the entry point. .vertex_shader(vs.main_entry_point(), ()) // The content of the vertex buffer describes a list of triangles. .triangle_list() // Use a resizable viewport set to draw over the entire window .viewports_dynamic_scissors_irrelevant(1) // See `vertex_shader`. .fragment_shader(fs.main_entry_point(), ()) .depth_stencil_simple_depth() // We have to indicate which subpass of which render pass this pipeline is going to be used // in. The pipeline will only be usable from this particular subpass. .render_pass(Subpass::from(render_pass.clone(), 0).unwrap()) // Now that our builder is filled, we call `build()` to obtain an actual pipeline. .build(device.clone()) .unwrap()); // Dynamic viewports allow us to recreate just the viewport when the window is resized // Otherwise we would have to recreate the whole pipeline. let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None }; // The render pass we created above only describes the layout of our framebuffers. Before we // can draw we also need to create the actual framebuffers. // // Since we need to draw to multiple images, we are going to create a different framebuffer for // each image. let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state); // Initialization is finally finished! // In some situations, the swapchain will become invalid by itself. This includes for example // when the window is resized (as the images of the swapchain will no longer match the // window's) or, on Android, when the application went to the background and goes back to the // foreground. // // In this situation, acquiring a swapchain image or presenting it will return an error. // Rendering to an image of that swapchain will not produce any error, but may or may not work. // To continue rendering, we need to recreate the swapchain by creating a new swapchain. // Here, we remember that we need to do this for the next loop iteration. let mut recreate_swapchain = false; // In the loop below we are going to submit commands to the GPU. Submitting a command produces // an object that implements the `GpuFuture` trait, which holds the resources for as long as // they are in use by the GPU. // // Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid // that, we store the submission of the previous frame here. let mut previous_frame_end = Box::new(sync::now(device.clone())) as Box; loop { // It is important to call this function from time to time, otherwise resources will keep // accumulating and you will eventually reach an out of memory error. // Calling this function polls various fences in order to determine what the GPU has // already processed, and frees the resources that are no longer needed. previous_frame_end.cleanup_finished(); // Whenever the window resizes we need to recreate everything dependent on the window size. // In this example that includes the swapchain, the framebuffers and the dynamic state viewport. if recreate_swapchain { // Get the new dimensions of the window. let dimensions = if let Some(dimensions) = window.get_inner_size() { let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { return; }; let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) { Ok(r) => r, // This error tends to happen when the user is manually resizing the window. // Simply restarting the loop is the easiest way to fix this issue. Err(SwapchainCreationError::UnsupportedDimensions) => continue, Err(err) => panic!("{:?}", err) }; swapchain = new_swapchain; // Because framebuffers contains an Arc on the old swapchain, we need to // recreate framebuffers as well. framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state); recreate_swapchain = false; } // Before we can draw on the output, we have to *acquire* an image from the swapchain. If // no image is available (which happens if you submit draw commands too quickly), then the // function will block. // This operation returns the index of the image that we are allowed to draw upon. // // This function can block if no image is available. The parameter is an optional timeout // after which the function call will return an error. let (image_num, acquire_future) = match swapchain::acquire_next_image(swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { recreate_swapchain = true; continue; } Err(err) => panic!("{:?}", err) }; // Specify the color to clear the framebuffer with i.e. blue let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into()); { let project_root = std::env::current_dir() .expect("failed to get root directory"); let mut compute_path = project_root.clone(); compute_path.push(PathBuf::from("resources/shaders/")); compute_path.push(PathBuf::from("simple-edge.compute")); let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap(); options.add_macro_definition("SETTING_POS_X", Some("0")); options.add_macro_definition("SETTING_POS_Y", Some("1")); options.add_macro_definition("SETTING_BUCKETS_START", Some("2")); options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2")); let shader = shade_runner::load_compute_with_options(compute_path, options) .expect("Failed to compile"); let vulkano_entry = shade_runner::parse_compute(&shader) .expect("failed to parse"); let x = unsafe { vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.compute) }.unwrap(); let c_pipeline = Arc::new({ unsafe { ComputePipeline::new(device.clone(), &x.compute_entry_point( CStr::from_bytes_with_nul_unchecked(b"main\0"), vulkano_entry.compute_layout), &(), ).unwrap() } }); let project_root = std::env::current_dir() .expect("failed to get root directory"); let mut compute_path = project_root.clone(); compute_path.push(PathBuf::from("resources/images/")); compute_path.push(PathBuf::from("funky-bird.jpg")); let img = image::open(compute_path).expect("Couldn't find image"); let xy = img.dimensions(); let data_length = xy.0 * xy.1 * 4; let pixel_count = img.raw_pixels().len(); println!("Pixel count {}", pixel_count); let mut image_buffer = Vec::new(); if pixel_count != data_length as usize { println!("Creating apha channel..."); for i in img.raw_pixels().iter() { if (image_buffer.len() + 1) % 4 == 0 { image_buffer.push(255); } image_buffer.push(*i); } image_buffer.push(255); } else { image_buffer = img.raw_pixels(); } println!("Buffer length {}", image_buffer.len()); println!("Size {:?}", xy); println!("Allocating Buffers..."); // Pull out the image data and place it in a buffer for the kernel to write to and for us to read from let write_buffer = { let mut buff = image_buffer.iter(); let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; // Pull out the image data and place it in a buffer for the kernel to read from let read_buffer = { let mut buff = image_buffer.iter(); let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; // A buffer to hold many i32 values to use as settings let settings_buffer = { let vec = vec![xy.0, xy.1]; let mut buff = vec.iter(); let data_iter = (0..2).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; println!("Done"); // Create the data descriptor set for our previously created shader pipeline let mut set = PersistentDescriptorSet::start(c_pipeline.clone(), 0) .add_buffer(write_buffer.clone()).unwrap() .add_buffer(read_buffer.clone()).unwrap() .add_buffer(settings_buffer.clone()).unwrap(); let mut set = Arc::new(set.build().unwrap()); // In order to draw, we have to build a *command buffer*. The command buffer object holds // the list of commands that are going to be executed. // // Building a command buffer is an expensive operation (usually a few hundred // microseconds), but it is known to be a hot path in the driver and is expected to be // optimized. // // Note that we have to pass a queue family when we create the command buffer. The command // buffer will only be executable on that given queue family. let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()) .unwrap() .dispatch([xy.0, xy.1, 1], c_pipeline.clone(), set.clone(), ()).unwrap() // Before we can draw, we have to *enter a render pass*. There are two methods to do // this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is // not covered here. // // The third parameter builds the list of values to clear the attachments with. The API // is similar to the list of attachments when building the framebuffers, except that // only the attachments that use `load: Clear` appear in the list. .begin_render_pass(framebuffers[image_num].clone(), false, clear_values) .unwrap() // We are now inside the first subpass of the render pass. We add a draw command. // // The last two parameters contain the list of resources to pass to the shaders. // Since we used an `EmptyPipeline` object, the objects have to be `()`. .draw(pipeline.clone(), &dynamic_state, vertex_buffer.clone(), (), ()) .unwrap() // We leave the render pass by calling `draw_end`. Note that if we had multiple // subpasses we could have called `next_inline` (or `next_secondary`) to jump to the // next subpass. .end_render_pass() .unwrap() // Finish building the command buffer by calling `build`. .build().unwrap(); let future = previous_frame_end.join(acquire_future) .then_execute(queue.clone(), command_buffer).unwrap() // The color output is now expected to contain our triangle. But in order to show it on // the screen, we have to *present* the image by calling `present`. // // This function does not actually present the image immediately. Instead it submits a // present command at the end of the queue. This means that it will only be presented once // the GPU has finished executing the command buffer that draws the triangle. .then_swapchain_present(queue.clone(), swapchain.clone(), image_num) .then_signal_fence_and_flush(); match future { Ok(future) => { previous_frame_end = Box::new(future) as Box<_>; } Err(FlushError::OutOfDate) => { recreate_swapchain = true; previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>; } Err(e) => { println!("{:?}", e); previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>; } } } // Note that in more complex programs it is likely that one of `acquire_next_image`, // `command_buffer::submit`, or `present` will block for some time. This happens when the // GPU's queue is full and the driver has to wait until the GPU finished some work. // // Unfortunately the Vulkan API doesn't provide any way to not wait or to detect when a // wait would happen. Blocking may be the desired behavior, but if you don't want to // block you should spawn a separate thread dedicated to submissions. // Handling the window events in order to close the program when the user wants to close // it. let mut done = false; events_loop.poll_events(|ev| { match ev { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true, Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true, _ => () } }); if done { return; } } } /// This method is called once during initialization, then again whenever the window is resized fn window_size_dependent_setup( images: &[Arc>], render_pass: Arc, dynamic_state: &mut DynamicState, ) -> Vec> { let dimensions = images[0].dimensions(); let viewport = Viewport { origin: [0.0, 0.0], dimensions: [dimensions[0] as f32, dimensions[1] as f32], depth_range: 0.0..1.0, }; dynamic_state.viewports = Some(vec!(viewport)); images.iter().map(|image| { Arc::new( Framebuffer::start(render_pass.clone()) .add(image.clone()).unwrap() .build().unwrap() ) as Arc }).collect::>() }