#![allow(dead_code)] #![allow(unused_variables)] #![allow(unused_mut)] extern crate cgmath; extern crate image; extern crate nalgebra as na; extern crate quick_xml; extern crate rand; extern crate sfml; extern crate time; use image::{DynamicImage, GenericImage, GenericImageView, Pixel, SubImage}; use sfml::graphics::*; use sfml::graphics::{ Color, RenderTarget, RenderWindow, }; use sfml::system::*; use sfml::system::Vector2 as sfVec2; use sfml::window::*; use sfml::window::{Event, Key, Style}; use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess}; use vulkano::command_buffer::AutoCommandBufferBuilder; use vulkano::descriptor::descriptor_set::PersistentDescriptorSet; use vulkano::device::{Device, DeviceExtensions}; use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice}; use vulkano::pipeline::ComputePipeline; use vulkano::sync::GpuFuture; use vulkano::sync; use std::sync::Arc; use std::{fs, mem, iter, ptr}; use std::path::PathBuf; use std::result; use crate::input::Input; use crate::slider::Slider; use crate::timer::Timer; use na::DimAdd; use std::time::{SystemTime, Duration}; use shade_runner as sr; use std::ffi::CStr; use std::ptr::write; mod slider; mod timer; mod input; mod util; fn main() { // Load up the input image, determine some details let mut img = image::open("resources/images/funky-bird.jpg").unwrap(); let xy = img.dimensions(); let data_length = xy.0 * xy.1 * 4; let mut image_buffer = Vec::new(); { // Create the vulkan instance, device, and device queue let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap(); let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap(); let (device, mut queues) = Device::new(physical, physical.supported_features(), &DeviceExtensions::none(), [(queue_family, 0.5)].iter().cloned()).unwrap(); let queue = queues.next().unwrap(); println!("Device initialized"); let project_root = std::env::current_dir().expect("failed to get root directory"); let mut compute_path = project_root.clone(); compute_path.push(PathBuf::from("resources/shaders/simple-homogenize.compute")); let shader = sr::load_compute(compute_path).expect("Failed to compile"); let vulkano_entry = sr::parse_compute(&shader).expect("failed to parse"); let x = unsafe { vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.compute) }.unwrap(); // Compile the shader and add it to a pipeline let pipeline = Arc::new({ unsafe { ComputePipeline::new(device.clone(), &x.compute_entry_point( CStr::from_bytes_with_nul_unchecked(b"main\0"), vulkano_entry.compute_layout), &() ).unwrap() } }); let pixel_count = img.raw_pixels().len(); println!("Pixel count {}", pixel_count); if pixel_count != data_length as usize { for i in img.raw_pixels().iter() { if (image_buffer.len() + 1) % 4 == 0 { image_buffer.push(255); } image_buffer.push(*i); } image_buffer.push(255); } else { image_buffer = img.raw_pixels(); } println!("Buffer length {}", image_buffer.len()); println!("Size {:?}", xy); println!("Allocating Buffers..."); { // Pull out the image data and place it in a buffer for the kernel to write to and for us to read from let write_buffer = { let mut buff = image_buffer.iter(); let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; // Pull out the image data and place it in a buffer for the kernel to read from let read_buffer = { let mut buff = image_buffer.iter(); let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; // A buffer to hold many i32 values to use as settings let settings_buffer = { let vec = vec![xy.0, xy.1]; let mut buff = vec.iter(); let data_iter = (0..2).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; println!("Done"); // Create the data descriptor set for our previously created shader pipeline let mut set = PersistentDescriptorSet::start(pipeline.clone(), 0) .add_buffer(write_buffer.clone()).unwrap() .add_buffer(read_buffer.clone()).unwrap() .add_buffer(settings_buffer.clone()).unwrap(); let mut set = Arc::new(set.build().unwrap()); println!("Running Kernel..."); // The command buffer I think pretty much serves to define what runs where for how many times let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap() .dispatch([xy.0, xy.1, 1], pipeline.clone(), set.clone(), ()).unwrap() .build().unwrap(); // Create a future for running the command buffer and then just fence it let future = sync::now(device.clone()) .then_execute(queue.clone(), command_buffer).unwrap() .then_signal_fence_and_flush().unwrap(); // I think this is redundant and returns immediately future.wait(None).unwrap(); println!("Done running kernel"); // The buffer is sync'd so we can just read straight from the handle let mut data_buffer_content = write_buffer.read().unwrap(); println!("Reading output"); for y in 0..xy.1 { for x in 0..xy.0 { let r = data_buffer_content[((xy.0 * y + x) * 4 + 0) as usize] as u8; let g = data_buffer_content[((xy.0 * y + x) * 4 + 1) as usize] as u8; let b = data_buffer_content[((xy.0 * y + x) * 4 + 2) as usize] as u8; let a = data_buffer_content[((xy.0 * y + x) * 4 + 3) as usize] as u8; *image_buffer.get_mut(((xy.0 * y + x) * 4 + 0) as usize).unwrap() = r; *image_buffer.get_mut(((xy.0 * y + x) * 4 + 1) as usize).unwrap() = g; *image_buffer.get_mut(((xy.0 * y + x) * 4 + 2) as usize).unwrap() = b; *image_buffer.get_mut(((xy.0 * y + x) * 4 + 3) as usize).unwrap() = a; img.put_pixel(x, y, image::Rgba([r, g, b, a])) } } } // Currently bringing all this start shit outta scope to see if it stops my gpu from screaming println!("Saving output"); img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs())); } let mut window = RenderWindow::new( (900, 900), "Custom drawable", Style::CLOSE, &Default::default(), ); let mut timer = Timer::new(); let mut input = Input::new(); let font = Font::from_file("resources/fonts/sansation.ttf").unwrap(); let mut bg_texture = Texture::new(xy.0, xy.1).unwrap(); bg_texture.update_from_pixels(image_buffer.as_slice(), xy.0, xy.1, 0, 0); let mut background_sprite = Sprite::with_texture(&bg_texture); background_sprite.set_position((0., 0.)); let mut slider = Slider::new(40.0, None); let step_size: f32 = 0.005; let mut elapsed_time: f32; let mut delta_time: f32; let mut accumulator_time: f32 = 0.0; let mut current_time: f32 = timer.elap_time(); while window.is_open() { while let Some(event) = window.poll_event() { match event { Event::Closed => return, Event::KeyPressed { code, .. } => { if code == Key::Escape { return; } } _ => {} } input.ingest(&event) } if input.is_held(Key::W) { } if input.is_held(Key::A) { } if input.is_held(Key::S) { } if input.is_held(Key::D) { } elapsed_time = timer.elap_time(); delta_time = elapsed_time - current_time; current_time = elapsed_time; if delta_time > 0.02 { delta_time = 0.02; } accumulator_time += delta_time; while (accumulator_time - step_size) >= step_size { accumulator_time -= step_size; } window.clear(&Color::BLACK); window.draw(&background_sprite); window.draw(&slider); window.display(); } }