1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
use crate::util::vertex_2d::{Vertex2D};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use std::collections::HashMap;
use vulkano::buffer::{BufferAccess, BufferUsage, ImmutableBuffer, CpuAccessibleBuffer};
use std::sync::Arc;
use vulkano::format::{ClearValue, Format};
use vulkano::framebuffer::{FramebufferAbstract, Framebuffer};
use vulkano::device::{Device, Queue};
use vulkano::instance::PhysicalDevice;
use vulkano::image::immutable::ImmutableImage;
use vulkano::image::{Dimensions, ImageAccess, ImageDimensions, SwapchainImage, ImageUsage, AttachmentImage};
use vulkano::sampler::{Sampler, SamplerAddressMode, MipmapMode, Filter};
use vulkano::descriptor::DescriptorSet;
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
use std::path::PathBuf;
use image::GenericImageView;
use std::iter::FromIterator;
use vulkano::swapchain::Capabilities;
use winit::Window;
use vulkano::pipeline::viewport::Viewport;
use vulkano::descriptor::descriptor::DescriptorDescTy::TexelBuffer;
use crate::canvas::canvas_frame::CanvasFrame;
use std::hash::Hash;
use crate::canvas::shader::generic_shader::GenericShader;
use crate::canvas::shader::common::CompiledGraphicsPipeline;
use shade_runner::CompiledShader;
use crate::canvas::{CanvasTextureHandle, CanvasImageHandle};
use crate::canvas::shader::dynamic_vertex::RuntimeVertexDef;
use crate::canvas::canvas_buffer::CanvasImage;

// Canvas is the accumulator of Sprites for drawing

// Needs to know:
//   textured?
//   colored?
//   vertices

/*

If it is textured. It needs to be rendered with the texture shader which requires a separate
    graphics pipeline. Might as well have a new render pass as well.


So framebuffer is tied to the swapchains images as well as the renderpass

it appears that renderpass is tied to the individual shader


*/

// I want to be able to draw 2d sprites.

// These sprites might be textured or a single color

// All of the single colors will be grouped into one batch using colored vertices.
// The rest will be grouped by their texture and run individually


pub trait Vertex {
    fn position(&self) -> (f32, f32) {
        (0.0, 0.0)
    }

    fn color(&self) -> Option<(f32, f32, f32, f32)> {
        Some((0., 0., 0., 0.))
    }
}



pub trait Drawable {
    fn get_vertices(&self) -> Vec<(f32, f32)>;
    fn get_color(&self) -> (f32, f32, f32, f32);
    fn get_texture_handle(&self) -> Option<Arc<CanvasTextureHandle>>;
    fn get_image_handle(&self) -> Option<Arc<CanvasImageHandle>>;
}

// Need three types of shaders. Solid, Textured, Image
#[derive(PartialEq, Eq, Hash, Clone)]
pub enum ShaderType {
    SOLID = 0,
    TEXTURED = 1,
    IMAGE = 2,
}




#[derive(Clone)]
pub struct CanvasTexture {
    handle: Arc<CanvasTextureHandle>,
    buffer: Arc<ImmutableImage<Format>>,
    name: String,
    size: (u32, u32),
}

impl CanvasTexture {
    fn get_descriptor_set(&self,
                          shader: Arc<CompiledGraphicsPipeline>,
                          sampler: Arc<Sampler>) -> Box<dyn DescriptorSet + Send + Sync> {
        let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
            PersistentDescriptorSet::start(
                shader.clone().get_pipeline().clone(), 0,
            )
                .add_sampled_image(self.buffer.clone(), sampler.clone()).unwrap()
                .build().unwrap());
        o
    }
}

#[derive(Clone)]
pub struct CanvasState {
    dynamic_state: DynamicState,
    sampler: Arc<Sampler>,

    // hold the image, texture, and shader buffers the same was as we do CompuState
    image_buffers: Vec<Arc<CanvasImage>>,
    texture_buffers: Vec<Arc<CanvasTexture>>,
    shader_buffers: HashMap<String, Arc<CompiledGraphicsPipeline>>,

    // Hold onto the vertices we get from the Compu and Canvas Frames
    // When the run comes around, push the vertices to the GPU
    colored_drawables: Vec<RuntimeVertexDef>,
    colored_vertex_buffer: Vec<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,

    textured_drawables: HashMap<Arc<CanvasTextureHandle>, Vec<Vec<RuntimeVertexDef>>>,
    textured_vertex_buffer: HashMap<Arc<CanvasTextureHandle>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,

    image_drawables: HashMap<Arc<CanvasImageHandle>, Vec<Vec<RuntimeVertexDef>>>,
    image_vertex_buffer: HashMap<Arc<CanvasImageHandle>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,

    // Looks like we gotta hold onto the queue for managing textures
    queue: Arc<Queue>,
    device: Arc<Device>,
}


impl CanvasState {
    // This method is called once during initialization, then again whenever the window is resized
    pub fn window_size_dependent_setup(&mut self, images: &[Arc<SwapchainImage<Window>>])
                                       -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
        let dimensions = images[0].dimensions();

        self.dynamic_state.viewports =
            Some(vec![Viewport {
                origin: [0.0, 0.0],
                dimensions: [dimensions.width() as f32, dimensions.height() as f32],
                depth_range: 0.0..1.0,
            }]);

        images.iter().map(|image| {
            Arc::new(
                Framebuffer::start(self.shader_buffers.get("color-passthrough").unwrap().get_renderpass().clone())
                    .add(image.clone()).unwrap()
                    .build().unwrap()
            ) as Arc<dyn FramebufferAbstract + Send + Sync>
        }).collect::<Vec<_>>()
    }

    // needs to take in the texture list
    pub fn new(queue: Arc<Queue>,
               device: Arc<Device>,
               physical: PhysicalDevice,
               capabilities: Capabilities) -> CanvasState {

        let solid_color_kernel = String::from("color-passthrough");
        let texture_kernel = String::from("simple_texture");

        CanvasState {
            dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None, compare_mask: None, write_mask: None, reference: None },
            sampler: Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
                                  MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
                                  SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(),
            image_buffers: vec![],
            texture_buffers: vec![],
            shader_buffers: HashMap::from_iter(vec![
//                (solid_color_kernel.clone(), Arc::new(GenericShader::new(solid_color_kernel.clone(),
//                                   device.clone(),
//
//                                                                         capabilities.clone(),
//                                   queue.clone(),
//                                   physical.clone(),
//                                   ))),
//                (solid_color_kernel.clone(), Arc::new(CanvasShader::new_colored(solid_color_kernel.clone(),
//                                                                capabilities.clone(),
//                                                                queue.clone(),
//                                                                physical.clone(),
//                                                                device.clone()))
//                ),
//                (texture_kernel.clone(), Arc::new(CanvasShader::new_textured(texture_kernel.clone(),
//                                                            capabilities.clone(),
//                                                            queue.clone(),
//                                                            physical.clone(),
//                                                            device.clone()))
//                ),
            ]),

            colored_drawables: vec![],
            colored_vertex_buffer: vec![],
            textured_drawables: HashMap::default(),
            textured_vertex_buffer: Default::default(),
            image_drawables: Default::default(),
            image_vertex_buffer: Default::default(),

            queue: queue.clone(),
            device: device.clone(),
        }
    }

    pub fn create_image(&mut self, dimensions: (u32, u32), usage: ImageUsage) -> Arc<CanvasImageHandle> {

        let handle = Arc::new(CanvasImageHandle { handle: self.image_buffers.len() as u32});

        let image = CanvasImage {
            handle: handle.clone(),
            buffer: AttachmentImage::with_usage(
                self.device.clone(),
                [dimensions.0, dimensions.1],
                Format::R8G8B8A8Uint,
                usage).unwrap(),
            size: dimensions,
        };

        self.image_buffers.push(Arc::new(image));

        handle
    }

    pub fn get_image(&self, image_handle: Arc<CanvasImageHandle>) -> Arc<AttachmentImage> {
        self.image_buffers.get((*image_handle).clone().handle as usize).unwrap()
            .clone().buffer.clone()
    }

    // TODO Handle file not found gracefully
    fn get_texture_from_file(&self, image_filename: String) -> Arc<ImmutableImage<Format>> {
        let project_root =
            std::env::current_dir()
                .expect("failed to get root directory");

        let mut compute_path = project_root.clone();
        compute_path.push(PathBuf::from("resources/images/"));
        compute_path.push(PathBuf::from(image_filename));

        let img = image::open(compute_path).expect("Couldn't find image");

        let xy = img.dimensions();

        let data_length = xy.0 * xy.1 * 4;
        let pixel_count = img.raw_pixels().len();

        let mut image_buffer = Vec::new();

        if pixel_count != data_length as usize {
            println!("Creating apha channel...");
            for i in img.raw_pixels().iter() {
                if (image_buffer.len() + 1) % 4 == 0 {
                    image_buffer.push(255);
                }
                image_buffer.push(*i);
            }
            image_buffer.push(255);
        } else {
            image_buffer = img.raw_pixels();
        }

        let (texture, tex_future) = ImmutableImage::from_iter(
            image_buffer.iter().cloned(),
            Dimensions::Dim2d { width: xy.0, height: xy.1 },
            Format::R8G8B8A8Srgb,
            self.queue.clone(),
        ).unwrap();

        texture
    }

    pub fn load_texture(&mut self, filename: String) -> Option<Arc<CanvasTextureHandle>> {
        let texture_buffer = self.get_texture_from_file(filename.clone());

        let handle = Arc::new(CanvasTextureHandle {
            handle: self.texture_buffers.len() as u32
        });

        let texture = Arc::new(CanvasTexture {
            handle: handle.clone(),
            buffer: self.get_texture_from_file(filename.clone()),
            name: filename.clone(),
            size: (0, 0),
        });

        self.texture_buffers.push(texture);

        Some(handle)
    }

    pub fn get_texture_handle(&self, texture_name: String)
                       -> Option<Arc<CanvasTextureHandle>> {

        for i in self.texture_buffers.clone() {
            if i.name == texture_name {
                return Some(i.handle.clone());
            }
        }
        None
    }

    pub fn get_texture(&self, texture_handle: Arc<CanvasTextureHandle>)
                   -> Arc<ImmutableImage<Format>> {

        let handle = texture_handle.handle as usize;

        if let Some(i) = self.texture_buffers.get(handle) {
            return i.clone().buffer.clone();
        } else {
            panic!("{} : Texture not loaded", handle);
        }
    }

    // After done using this, need to call allocated vertex buffers
    pub fn draw(&mut self, canvas_frame: CanvasFrame) {
        self.textured_drawables = canvas_frame.textured_drawables;
        self.colored_drawables = canvas_frame.colored_drawables;
        self.image_drawables = canvas_frame.image_drawables;

        self.allocate_vertex_buffers(self.device.clone());
    }

    fn allocate_vertex_buffers(&mut self, device: Arc<Device>) {
        self.colored_vertex_buffer.clear();
        self.textured_vertex_buffer.clear();
        self.image_vertex_buffer.clear();

        //TODO should probably use cpu accessible buffer instead of recreating immutes each frame
        /*
          CpuAccessibleBuffer::from_iter(

                    device.clone(),
                    BufferUsage::vertex_buffer(),
                    self.colored_drawables.iter().cloned(),
                ).unwrap().0;
        */

        self.colored_vertex_buffer.push(
            ImmutableBuffer::from_iter(
                self.colored_drawables.iter().cloned(),
                BufferUsage::vertex_buffer(),
                self.queue.clone(),
            ).unwrap().0
        );

        for (k, v) in self.textured_drawables.drain() {
            self.textured_vertex_buffer.insert(
                k.clone(),
                ImmutableBuffer::from_iter(
                    // TODO: bad bad bad adbadbadbab
                    v.first().unwrap().iter().cloned(),
                    BufferUsage::vertex_buffer(),
                    self.queue.clone(),
                ).unwrap().0,
            );
        }
    }

    fn get_solid_color_descriptor_set(&self, kernel: Arc<CompiledGraphicsPipeline>) -> Box<dyn DescriptorSet + Send + Sync> {

        let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
            PersistentDescriptorSet::start(
                kernel.clone().get_pipeline().clone(), 0,
            ).build().unwrap());
        o
    }

    pub fn draw_commands(&self,
                         mut command_buffer: AutoCommandBufferBuilder,
                         framebuffers: Vec<Arc<dyn FramebufferAbstract + Send + Sync>>,
                         image_num: usize) -> AutoCommandBufferBuilder {

        // Specify the color to clear the framebuffer with i.e. blue
        let clear_values = vec!(ClearValue::Float([0.0, 0.0, 1.0, 1.0]));

        let mut command_buffer = command_buffer.begin_render_pass(
            framebuffers[image_num].clone(), false, clear_values.clone(),
        ).unwrap();

        // Solid colors
        let mut shader = self.shader_buffers.get("color-passthrough").unwrap().clone();

        command_buffer = command_buffer.draw(
            shader.get_pipeline().clone(),
            &self.dynamic_state.clone(),
            self.colored_vertex_buffer.clone(),
            (), (),
        ).unwrap();


        // Images
        let mut shader = self.shader_buffers.get("simple_texture").unwrap().clone();


        let handle = self.get_texture_handle(String::from("funky-bird.jpg")).unwrap().clone();

        // TODO: bad bad bad
        // Only uses the first texture
        let descriptor_set = self.texture_buffers.first().clone().unwrap().clone()
            .get_descriptor_set(shader.clone(), self.sampler.clone());

        let vertex_buffer = self.textured_vertex_buffer.get(&handle).unwrap().clone();

        command_buffer = command_buffer.draw(
            shader.get_pipeline().clone(),
            &self.dynamic_state.clone(), vec![vertex_buffer],
            vec![descriptor_set], ()
        ).unwrap();

        /*for (shader_type, kernel) in self.shader_kernels.clone().iter() {
            match shader_type {
                ShaderType::SOLID => {

                }
                ShaderType::TEXTURED => {
                    command_buffer = command_buffer.draw(
                        kernel.clone().get_pipeline().clone(),
                        &dynamic_state.clone(), self.textured_vertex_buffer.clone(),
                        vec![self.get_textured_descriptor_set(String::from("funky-bird.jpg"))], ()
                    ).unwrap();
                }
                ShaderType::IMAGE => {}
            }
        }*/

        command_buffer
            .end_render_pass()
            .unwrap()
    }
}