1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#[cfg(feature = "decimal")]
use decimal::d128;
use std::cmp::{Ordering, PartialOrd};
use std::fmt;
use std::marker::PhantomData;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign};

use num::{Num, One, Zero};

use num_complex::Complex;

use approx::{AbsDiffEq, RelativeEq, UlpsEq};

use crate::general::{
    AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractMonoid,
    AbstractQuasigroup, AbstractSemigroup, Additive, JoinSemilattice, Lattice, MeetSemilattice,
    Multiplicative, Operator, SubsetOf, TwoSidedInverse,
};

/// A type that is equipped with identity.
pub trait Identity<O: Operator> {
    /// The identity element.
    fn identity() -> Self;

    /// Specific identity.
    #[inline]
    fn id(_: O) -> Self
    where
        Self: Sized,
    {
        Self::identity()
    }
}

impl_ident!(Additive; 0; u8, u16, u32, u64, usize, i8, i16, i32, i64, isize);
impl_ident!(Additive; 0.; f32, f64);
#[cfg(feature = "decimal")]
impl_ident!(Additive; d128!(0.); d128);
impl_ident!(Multiplicative; 1; u8, u16, u32, u64, usize, i8, i16, i32, i64, isize);
impl_ident!(Multiplicative; 1.; f32, f64);
#[cfg(feature = "decimal")]
impl_ident!(Multiplicative; d128!(1.); d128);

impl<N: Identity<Additive>> Identity<Additive> for Complex<N> {
    #[inline]
    fn identity() -> Self {
        Complex {
            re: N::identity(),
            im: N::identity(),
        }
    }
}

impl<N: Num + Clone> Identity<Multiplicative> for Complex<N> {
    #[inline]
    fn identity() -> Self {
        Complex::new(N::one(), N::zero())
    }
}

/// The universal identity element wrt. a given operator, usually noted `Id` with a
/// context-dependent subscript.
///
/// By default, it is the multiplicative identity element. It represents the degenerate set
/// containing only the identity element of any group-like structure.  It has no dimension known at
/// compile-time. All its operations are no-ops.
#[repr(C)]
#[derive(Debug)]
pub struct Id<O: Operator = Multiplicative> {
    _op: PhantomData<O>,
}

impl<O: Operator> Id<O> {
    /// Creates a new identity element.
    #[inline]
    pub fn new() -> Id<O> {
        Id { _op: PhantomData }
    }
}

impl<O: Operator> Copy for Id<O> {}

impl<O: Operator> Clone for Id<O> {
    #[inline]
    fn clone(&self) -> Id<O> {
        Id::new()
    }
}

impl<O: Operator> fmt::Display for Id<O> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Identity element")
    }
}

impl<O: Operator> PartialEq for Id<O> {
    #[inline]
    fn eq(&self, _: &Id<O>) -> bool {
        true
    }
}

impl<O: Operator> Eq for Id<O> {}

impl<O: Operator> PartialOrd for Id<O> {
    #[inline]
    fn partial_cmp(&self, _: &Id<O>) -> Option<Ordering> {
        Some(Ordering::Equal)
    }
}

impl<O: Operator> Identity<O> for Id<O> {
    #[inline]
    fn identity() -> Id<O> {
        Id::new()
    }
}

impl<O: Operator> AbsDiffEq for Id<O> {
    type Epsilon = Id<O>;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        Id::new()
    }

    #[inline]
    fn abs_diff_eq(&self, _: &Self, _: Self::Epsilon) -> bool {
        true
    }
}

impl<O: Operator> RelativeEq for Id<O> {
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        Id::new()
    }

    #[inline]
    fn relative_eq(&self, _: &Self, _: Self::Epsilon, _: Self::Epsilon) -> bool {
        true
    }
}

impl<O: Operator> UlpsEq for Id<O> {
    #[inline]
    fn default_max_ulps() -> u32 {
        0
    }

    #[inline]
    fn ulps_eq(&self, _: &Self, _: Self::Epsilon, _: u32) -> bool {
        true
    }
}

/*
 *
 * Algebraic structures.
 *
 */
impl Mul<Id> for Id {
    type Output = Id;

    fn mul(self, _: Id) -> Id {
        self
    }
}

impl MulAssign<Id> for Id {
    fn mul_assign(&mut self, _: Id) {
        // no-op
    }
}

impl Div<Id> for Id {
    type Output = Id;

    fn div(self, _: Id) -> Id {
        self
    }
}

impl DivAssign<Id> for Id {
    fn div_assign(&mut self, _: Id) {
        // no-op
    }
}

impl Add<Id<Additive>> for Id<Additive> {
    type Output = Id<Additive>;

    fn add(self, _: Id<Additive>) -> Id<Additive> {
        self
    }
}

impl AddAssign<Id<Additive>> for Id<Additive> {
    fn add_assign(&mut self, _: Id<Additive>) {
        // no-op
    }
}

impl<O: Operator> AbstractMagma<O> for Id<O> {
    #[inline]
    fn operate(&self, _: &Self) -> Id<O> {
        Id::new()
    }
}

impl<O: Operator> TwoSidedInverse<O> for Id<O> {
    #[inline]
    fn two_sided_inverse(&self) -> Self {
        Id::new()
    }

    #[inline]
    fn two_sided_inverse_mut(&mut self) {
        // no-op
    }
}

impl<O: Operator> AbstractSemigroup<O> for Id<O> {}
impl<O: Operator> AbstractQuasigroup<O> for Id<O> {}
impl<O: Operator> AbstractMonoid<O> for Id<O> {}
impl<O: Operator> AbstractLoop<O> for Id<O> {}
impl<O: Operator> AbstractGroup<O> for Id<O> {}
impl<O: Operator> AbstractGroupAbelian<O> for Id<O> {}

impl One for Id {
    #[inline]
    fn one() -> Id {
        Id::new()
    }
}

impl Zero for Id<Additive> {
    #[inline]
    fn zero() -> Id<Additive> {
        Id::new()
    }

    #[inline]
    fn is_zero(&self) -> bool {
        true
    }
}

/*
 *
 * Conversions.
 *
 */
impl<O: Operator, T: PartialEq + Identity<O>> SubsetOf<T> for Id<O> {
    #[inline]
    fn to_superset(&self) -> T {
        T::identity()
    }

    #[inline]
    fn is_in_subset(t: &T) -> bool {
        *t == T::identity()
    }

    #[inline]
    unsafe fn from_superset_unchecked(_: &T) -> Self {
        Id::new()
    }
}

impl<O: Operator> MeetSemilattice for Id<O> {
    #[inline]
    fn meet(&self, _: &Self) -> Self {
        Id::new()
    }
}

impl<O: Operator> JoinSemilattice for Id<O> {
    #[inline]
    fn join(&self, _: &Self) -> Self {
        Id::new()
    }
}

impl<O: Operator> Lattice for Id<O> {}