1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
use core::cell::UnsafeCell; use core::fmt; use core::mem; use core::ptr; use core::slice; use core::sync::atomic::{self, AtomicBool, AtomicUsize, Ordering}; use Backoff; /// A thread-safe mutable memory location. /// /// This type is equivalent to [`Cell`], except it can also be shared among multiple threads. /// /// Operations on `AtomicCell`s use atomic instructions whenever possible, and synchronize using /// global locks otherwise. You can call [`AtomicCell::<T>::is_lock_free()`] to check whether /// atomic instructions or locks will be used. /// /// [`Cell`]: https://doc.rust-lang.org/std/cell/struct.Cell.html /// [`AtomicCell::<T>::is_lock_free()`]: struct.AtomicCell.html#method.is_lock_free pub struct AtomicCell<T> { /// The inner value. /// /// If this value can be transmuted into a primitive atomic type, it will be treated as such. /// Otherwise, all potentially concurrent operations on this data will be protected by a global /// lock. value: UnsafeCell<T>, } unsafe impl<T: Send> Send for AtomicCell<T> {} unsafe impl<T: Send> Sync for AtomicCell<T> {} impl<T> AtomicCell<T> { /// Creates a new atomic cell initialized with `val`. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let a = AtomicCell::new(7); /// ``` pub fn new(val: T) -> AtomicCell<T> { AtomicCell { value: UnsafeCell::new(val), } } /// Returns a mutable reference to the inner value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let mut a = AtomicCell::new(7); /// *a.get_mut() += 1; /// /// assert_eq!(a.load(), 8); /// ``` pub fn get_mut(&mut self) -> &mut T { unsafe { &mut *self.value.get() } } /// Unwraps the atomic cell and returns its inner value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let mut a = AtomicCell::new(7); /// let v = a.into_inner(); /// /// assert_eq!(v, 7); /// ``` pub fn into_inner(self) -> T { self.value.into_inner() } /// Returns `true` if operations on values of this type are lock-free. /// /// If the compiler or the platform doesn't support the necessary atomic instructions, /// `AtomicCell<T>` will use global locks for every potentially concurrent atomic operation. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// // This type is internally represented as `AtomicUsize` so we can just use atomic /// // operations provided by it. /// assert_eq!(AtomicCell::<usize>::is_lock_free(), true); /// /// // A wrapper struct around `isize`. /// struct Foo { /// bar: isize, /// } /// // `AtomicCell<Foo>` will be internally represented as `AtomicIsize`. /// assert_eq!(AtomicCell::<Foo>::is_lock_free(), true); /// /// // Operations on zero-sized types are always lock-free. /// assert_eq!(AtomicCell::<()>::is_lock_free(), true); /// /// // Very large types cannot be represented as any of the standard atomic types, so atomic /// // operations on them will have to use global locks for synchronization. /// assert_eq!(AtomicCell::<[u8; 1000]>::is_lock_free(), false); /// ``` pub fn is_lock_free() -> bool { atomic_is_lock_free::<T>() } /// Stores `val` into the atomic cell. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let a = AtomicCell::new(7); /// /// assert_eq!(a.load(), 7); /// a.store(8); /// assert_eq!(a.load(), 8); /// ``` pub fn store(&self, val: T) { if mem::needs_drop::<T>() { drop(self.swap(val)); } else { unsafe { atomic_store(self.value.get(), val); } } } /// Stores `val` into the atomic cell and returns the previous value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let a = AtomicCell::new(7); /// /// assert_eq!(a.load(), 7); /// assert_eq!(a.swap(8), 7); /// assert_eq!(a.load(), 8); /// ``` pub fn swap(&self, val: T) -> T { unsafe { atomic_swap(self.value.get(), val) } } } impl<T: Copy> AtomicCell<T> { /// Loads a value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let a = AtomicCell::new(7); /// /// assert_eq!(a.load(), 7); /// ``` pub fn load(&self) -> T { unsafe { atomic_load(self.value.get()) } } } impl<T: Copy + Eq> AtomicCell<T> { /// If the current value equals `current`, stores `new` into the atomic cell. /// /// The return value is always the previous value. If it is equal to `current`, then the value /// was updated. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let a = AtomicCell::new(1); /// /// assert_eq!(a.compare_exchange(2, 3), Err(1)); /// assert_eq!(a.load(), 1); /// /// assert_eq!(a.compare_exchange(1, 2), Ok(1)); /// assert_eq!(a.load(), 2); /// ``` pub fn compare_and_swap(&self, current: T, new: T) -> T { match self.compare_exchange(current, new) { Ok(v) => v, Err(v) => v, } } /// If the current value equals `current`, stores `new` into the atomic cell. /// /// The return value is a result indicating whether the new value was written and containing /// the previous value. On success this value is guaranteed to be equal to `current`. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let a = AtomicCell::new(1); /// /// assert_eq!(a.compare_exchange(2, 3), Err(1)); /// assert_eq!(a.load(), 1); /// /// assert_eq!(a.compare_exchange(1, 2), Ok(1)); /// assert_eq!(a.load(), 2); /// ``` pub fn compare_exchange(&self, mut current: T, new: T) -> Result<T, T> { loop { match unsafe { atomic_compare_exchange_weak(self.value.get(), current, new) } { Ok(_) => return Ok(current), Err(previous) => { if previous != current { return Err(previous); } // The compare-exchange operation has failed and didn't store `new`. The // failure is either spurious, or `previous` was semantically equal to // `current` but not byte-equal. Let's retry with `previous` as the new // `current`. current = previous; } } } } } macro_rules! impl_arithmetic { ($t:ty, $example:tt) => { impl AtomicCell<$t> { /// Increments the current value by `val` and returns the previous value. /// /// The addition wraps on overflow. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// #[doc = $example] /// /// assert_eq!(a.fetch_add(3), 7); /// assert_eq!(a.load(), 10); /// ``` #[inline] pub fn fetch_add(&self, val: $t) -> $t { if can_transmute::<$t, atomic::AtomicUsize>() { let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) }; a.fetch_add(val as usize, Ordering::SeqCst) as $t } else { let _guard = lock(self.value.get() as usize).write(); let value = unsafe { &mut *(self.value.get()) }; let old = *value; *value = value.wrapping_add(val); old } } /// Decrements the current value by `val` and returns the previous value. /// /// The subtraction wraps on overflow. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// #[doc = $example] /// /// assert_eq!(a.fetch_sub(3), 7); /// assert_eq!(a.load(), 4); /// ``` #[inline] pub fn fetch_sub(&self, val: $t) -> $t { if can_transmute::<$t, atomic::AtomicUsize>() { let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) }; a.fetch_sub(val as usize, Ordering::SeqCst) as $t } else { let _guard = lock(self.value.get() as usize).write(); let value = unsafe { &mut *(self.value.get()) }; let old = *value; *value = value.wrapping_sub(val); old } } /// Applies bitwise "and" to the current value and returns the previous value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// #[doc = $example] /// /// assert_eq!(a.fetch_and(3), 7); /// assert_eq!(a.load(), 3); /// ``` #[inline] pub fn fetch_and(&self, val: $t) -> $t { if can_transmute::<$t, atomic::AtomicUsize>() { let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) }; a.fetch_and(val as usize, Ordering::SeqCst) as $t } else { let _guard = lock(self.value.get() as usize).write(); let value = unsafe { &mut *(self.value.get()) }; let old = *value; *value &= val; old } } /// Applies bitwise "or" to the current value and returns the previous value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// #[doc = $example] /// /// assert_eq!(a.fetch_or(16), 7); /// assert_eq!(a.load(), 23); /// ``` #[inline] pub fn fetch_or(&self, val: $t) -> $t { if can_transmute::<$t, atomic::AtomicUsize>() { let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) }; a.fetch_or(val as usize, Ordering::SeqCst) as $t } else { let _guard = lock(self.value.get() as usize).write(); let value = unsafe { &mut *(self.value.get()) }; let old = *value; *value |= val; old } } /// Applies bitwise "xor" to the current value and returns the previous value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// #[doc = $example] /// /// assert_eq!(a.fetch_xor(2), 7); /// assert_eq!(a.load(), 5); /// ``` #[inline] pub fn fetch_xor(&self, val: $t) -> $t { if can_transmute::<$t, atomic::AtomicUsize>() { let a = unsafe { &*(self.value.get() as *const atomic::AtomicUsize) }; a.fetch_xor(val as usize, Ordering::SeqCst) as $t } else { let _guard = lock(self.value.get() as usize).write(); let value = unsafe { &mut *(self.value.get()) }; let old = *value; *value ^= val; old } } } }; ($t:ty, $atomic:ty, $example:tt) => { impl AtomicCell<$t> { /// Increments the current value by `val` and returns the previous value. /// /// The addition wraps on overflow. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// #[doc = $example] /// /// assert_eq!(a.fetch_add(3), 7); /// assert_eq!(a.load(), 10); /// ``` #[inline] pub fn fetch_add(&self, val: $t) -> $t { let a = unsafe { &*(self.value.get() as *const $atomic) }; a.fetch_add(val, Ordering::SeqCst) } /// Decrements the current value by `val` and returns the previous value. /// /// The subtraction wraps on overflow. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// #[doc = $example] /// /// assert_eq!(a.fetch_sub(3), 7); /// assert_eq!(a.load(), 4); /// ``` #[inline] pub fn fetch_sub(&self, val: $t) -> $t { let a = unsafe { &*(self.value.get() as *const $atomic) }; a.fetch_sub(val, Ordering::SeqCst) } /// Applies bitwise "and" to the current value and returns the previous value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// #[doc = $example] /// /// assert_eq!(a.fetch_and(3), 7); /// assert_eq!(a.load(), 3); /// ``` #[inline] pub fn fetch_and(&self, val: $t) -> $t { let a = unsafe { &*(self.value.get() as *const $atomic) }; a.fetch_and(val, Ordering::SeqCst) } /// Applies bitwise "or" to the current value and returns the previous value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// #[doc = $example] /// /// assert_eq!(a.fetch_or(16), 7); /// assert_eq!(a.load(), 23); /// ``` #[inline] pub fn fetch_or(&self, val: $t) -> $t { let a = unsafe { &*(self.value.get() as *const $atomic) }; a.fetch_or(val, Ordering::SeqCst) } /// Applies bitwise "xor" to the current value and returns the previous value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// #[doc = $example] /// /// assert_eq!(a.fetch_xor(2), 7); /// assert_eq!(a.load(), 5); /// ``` #[inline] pub fn fetch_xor(&self, val: $t) -> $t { let a = unsafe { &*(self.value.get() as *const $atomic) }; a.fetch_xor(val, Ordering::SeqCst) } } }; ($t:ty, $size:tt, $atomic:ty, $example:tt) => { #[cfg(target_has_atomic = $size)] impl_arithmetic!($t, $atomic, $example); }; } cfg_if! { if #[cfg(feature = "nightly")] { impl_arithmetic!(u8, "8", atomic::AtomicU8, "let a = AtomicCell::new(7u8);"); impl_arithmetic!(i8, "8", atomic::AtomicI8, "let a = AtomicCell::new(7i8);"); impl_arithmetic!(u16, "16", atomic::AtomicU16, "let a = AtomicCell::new(7u16);"); impl_arithmetic!(i16, "16", atomic::AtomicI16, "let a = AtomicCell::new(7i16);"); impl_arithmetic!(u32, "32", atomic::AtomicU32, "let a = AtomicCell::new(7u32);"); impl_arithmetic!(i32, "32", atomic::AtomicI32, "let a = AtomicCell::new(7i32);"); impl_arithmetic!(u64, "64", atomic::AtomicU64, "let a = AtomicCell::new(7u64);"); impl_arithmetic!(i64, "64", atomic::AtomicI64, "let a = AtomicCell::new(7i64);"); impl_arithmetic!(u128, "let a = AtomicCell::new(7u128);"); impl_arithmetic!(i128, "let a = AtomicCell::new(7i128);"); } else { impl_arithmetic!(u8, "let a = AtomicCell::new(7u8);"); impl_arithmetic!(i8, "let a = AtomicCell::new(7i8);"); impl_arithmetic!(u16, "let a = AtomicCell::new(7u16);"); impl_arithmetic!(i16, "let a = AtomicCell::new(7i16);"); impl_arithmetic!(u32, "let a = AtomicCell::new(7u32);"); impl_arithmetic!(i32, "let a = AtomicCell::new(7i32);"); impl_arithmetic!(u64, "let a = AtomicCell::new(7u64);"); impl_arithmetic!(i64, "let a = AtomicCell::new(7i64);"); impl_arithmetic!(u128, "let a = AtomicCell::new(7u128);"); impl_arithmetic!(i128, "let a = AtomicCell::new(7i128);"); } } impl_arithmetic!( usize, atomic::AtomicUsize, "let a = AtomicCell::new(7usize);" ); impl_arithmetic!( isize, atomic::AtomicIsize, "let a = AtomicCell::new(7isize);" ); impl AtomicCell<bool> { /// Applies logical "and" to the current value and returns the previous value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let a = AtomicCell::new(true); /// /// assert_eq!(a.fetch_and(true), true); /// assert_eq!(a.load(), true); /// /// assert_eq!(a.fetch_and(false), true); /// assert_eq!(a.load(), false); /// ``` #[inline] pub fn fetch_and(&self, val: bool) -> bool { let a = unsafe { &*(self.value.get() as *const AtomicBool) }; a.fetch_and(val, Ordering::SeqCst) } /// Applies logical "or" to the current value and returns the previous value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let a = AtomicCell::new(false); /// /// assert_eq!(a.fetch_or(false), false); /// assert_eq!(a.load(), false); /// /// assert_eq!(a.fetch_or(true), false); /// assert_eq!(a.load(), true); /// ``` #[inline] pub fn fetch_or(&self, val: bool) -> bool { let a = unsafe { &*(self.value.get() as *const AtomicBool) }; a.fetch_or(val, Ordering::SeqCst) } /// Applies logical "xor" to the current value and returns the previous value. /// /// # Examples /// /// ``` /// use crossbeam_utils::atomic::AtomicCell; /// /// let a = AtomicCell::new(true); /// /// assert_eq!(a.fetch_xor(false), true); /// assert_eq!(a.load(), true); /// /// assert_eq!(a.fetch_xor(true), true); /// assert_eq!(a.load(), false); /// ``` #[inline] pub fn fetch_xor(&self, val: bool) -> bool { let a = unsafe { &*(self.value.get() as *const AtomicBool) }; a.fetch_xor(val, Ordering::SeqCst) } } impl<T: Default> Default for AtomicCell<T> { fn default() -> AtomicCell<T> { AtomicCell::new(T::default()) } } impl<T: Copy + fmt::Debug> fmt::Debug for AtomicCell<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("AtomicCell") .field("value", &self.load()) .finish() } } /// Returns `true` if the two values are equal byte-for-byte. fn byte_eq<T>(a: &T, b: &T) -> bool { unsafe { let a = slice::from_raw_parts(a as *const _ as *const u8, mem::size_of::<T>()); let b = slice::from_raw_parts(b as *const _ as *const u8, mem::size_of::<T>()); a == b } } /// Returns `true` if values of type `A` can be transmuted into values of type `B`. fn can_transmute<A, B>() -> bool { // Sizes must be equal, but alignment of `A` must be greater or equal than that of `B`. mem::size_of::<A>() == mem::size_of::<B>() && mem::align_of::<A>() >= mem::align_of::<B>() } /// A simple stamped lock. struct Lock { /// The current state of the lock. /// /// All bits except the least significant one hold the current stamp. When locked, the state /// equals 1 and doesn't contain a valid stamp. state: AtomicUsize, } impl Lock { /// If not locked, returns the current stamp. /// /// This method should be called before optimistic reads. #[inline] fn optimistic_read(&self) -> Option<usize> { let state = self.state.load(Ordering::Acquire); if state == 1 { None } else { Some(state) } } /// Returns `true` if the current stamp is equal to `stamp`. /// /// This method should be called after optimistic reads to check whether they are valid. The /// argument `stamp` should correspond to the one returned by method `optimistic_read`. #[inline] fn validate_read(&self, stamp: usize) -> bool { atomic::fence(Ordering::Acquire); self.state.load(Ordering::Relaxed) == stamp } /// Grabs the lock for writing. #[inline] fn write(&'static self) -> WriteGuard { let backoff = Backoff::new(); loop { let previous = self.state.swap(1, Ordering::Acquire); if previous != 1 { atomic::fence(Ordering::Release); return WriteGuard { lock: self, state: previous, }; } backoff.snooze(); } } } /// A RAII guard that releases the lock and increments the stamp when dropped. struct WriteGuard { /// The parent lock. lock: &'static Lock, /// The stamp before locking. state: usize, } impl WriteGuard { /// Releases the lock without incrementing the stamp. #[inline] fn abort(self) { self.lock.state.store(self.state, Ordering::Release); } } impl Drop for WriteGuard { #[inline] fn drop(&mut self) { // Release the lock and increment the stamp. self.lock .state .store(self.state.wrapping_add(2), Ordering::Release); } } /// Returns a reference to the global lock associated with the `AtomicCell` at address `addr`. /// /// This function is used to protect atomic data which doesn't fit into any of the primitive atomic /// types in `std::sync::atomic`. Operations on such atomics must therefore use a global lock. /// /// However, there is not only one global lock but an array of many locks, and one of them is /// picked based on the given address. Having many locks reduces contention and improves /// scalability. #[inline] #[must_use] fn lock(addr: usize) -> &'static Lock { // The number of locks is a prime number because we want to make sure `addr % LEN` gets // dispersed across all locks. // // Note that addresses are always aligned to some power of 2, depending on type `T` in // `AtomicCell<T>`. If `LEN` was an even number, then `addr % LEN` would be an even number, // too, which means only half of the locks would get utilized! // // It is also possible for addresses to accidentally get aligned to a number that is not a // power of 2. Consider this example: // // ``` // #[repr(C)] // struct Foo { // a: AtomicCell<u8>, // b: u8, // c: u8, // } // ``` // // Now, if we have a slice of type `&[Foo]`, it is possible that field `a` in all items gets // stored at addresses that are multiples of 3. It'd be too bad if `LEN` was divisible by 3. // In order to protect from such cases, we simply choose a large prime number for `LEN`. const LEN: usize = 97; const L: Lock = Lock { state: AtomicUsize::new(0), }; static LOCKS: [Lock; LEN] = [ L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, ]; // If the modulus is a constant number, the compiler will use crazy math to transform this into // a sequence of cheap arithmetic operations rather than using the slow modulo instruction. &LOCKS[addr % LEN] } /// An atomic `()`. /// /// All operations are noops. struct AtomicUnit; impl AtomicUnit { #[inline] fn load(&self, _order: Ordering) {} #[inline] fn store(&self, _val: (), _order: Ordering) {} #[inline] fn swap(&self, _val: (), _order: Ordering) {} #[inline] fn compare_exchange_weak( &self, _current: (), _new: (), _success: Ordering, _failure: Ordering, ) -> Result<(), ()> { Ok(()) } } macro_rules! atomic { // If values of type `$t` can be transmuted into values of the primitive atomic type `$atomic`, // declares variable `$a` of type `$atomic` and executes `$atomic_op`, breaking out of the loop. (@check, $t:ty, $atomic:ty, $a:ident, $atomic_op:expr) => { if can_transmute::<$t, $atomic>() { let $a: &$atomic; break $atomic_op; } }; // If values of type `$t` can be transmuted into values of a primitive atomic type, declares // variable `$a` of that type and executes `$atomic_op`. Otherwise, just executes // `$fallback_op`. ($t:ty, $a:ident, $atomic_op:expr, $fallback_op:expr) => { loop { atomic!(@check, $t, AtomicUnit, $a, $atomic_op); atomic!(@check, $t, atomic::AtomicUsize, $a, $atomic_op); #[cfg(feature = "nightly")] { #[cfg(target_has_atomic = "8")] atomic!(@check, $t, atomic::AtomicU8, $a, $atomic_op); #[cfg(target_has_atomic = "16")] atomic!(@check, $t, atomic::AtomicU16, $a, $atomic_op); #[cfg(target_has_atomic = "32")] atomic!(@check, $t, atomic::AtomicU32, $a, $atomic_op); #[cfg(target_has_atomic = "64")] atomic!(@check, $t, atomic::AtomicU64, $a, $atomic_op); } break $fallback_op; } }; } /// Returns `true` if operations on `AtomicCell<T>` are lock-free. fn atomic_is_lock_free<T>() -> bool { atomic! { T, _a, true, false } } /// Atomically reads data from `src`. /// /// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a /// global lock otherwise. unsafe fn atomic_load<T>(src: *mut T) -> T where T: Copy, { atomic! { T, a, { a = &*(src as *const _ as *const _); mem::transmute_copy(&a.load(Ordering::SeqCst)) }, { let lock = lock(src as usize); // Try doing an optimistic read first. if let Some(stamp) = lock.optimistic_read() { // We need a volatile read here because other threads might concurrently modify the // value. In theory, data races are *always* UB, even if we use volatile reads and // discard the data when a data race is detected. The proper solution would be to // do atomic reads and atomic writes, but we can't atomically read and write all // kinds of data since `AtomicU8` is not available on stable Rust yet. let val = ptr::read_volatile(src); if lock.validate_read(stamp) { return val; } } // Grab a regular write lock so that writers don't starve this load. let guard = lock.write(); let val = ptr::read(src); // The value hasn't been changed. Drop the guard without incrementing the stamp. guard.abort(); val } } } /// Atomically writes `val` to `dst`. /// /// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a /// global lock otherwise. unsafe fn atomic_store<T>(dst: *mut T, val: T) { atomic! { T, a, { a = &*(dst as *const _ as *const _); let res = a.store(mem::transmute_copy(&val), Ordering::SeqCst); mem::forget(val); res }, { let _guard = lock(dst as usize).write(); ptr::write(dst, val) } } } /// Atomically swaps data at `dst` with `val`. /// /// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a /// global lock otherwise. unsafe fn atomic_swap<T>(dst: *mut T, val: T) -> T { atomic! { T, a, { a = &*(dst as *const _ as *const _); let res = mem::transmute_copy(&a.swap(mem::transmute_copy(&val), Ordering::SeqCst)); mem::forget(val); res }, { let _guard = lock(dst as usize).write(); ptr::replace(dst, val) } } } /// Atomically compares data at `dst` to `current` and, if equal byte-for-byte, exchanges data at /// `dst` with `new`. /// /// Returns the old value on success, or the current value at `dst` on failure. /// /// This operation uses the `SeqCst` ordering. If possible, an atomic instructions is used, and a /// global lock otherwise. unsafe fn atomic_compare_exchange_weak<T>(dst: *mut T, current: T, new: T) -> Result<T, T> where T: Copy, { atomic! { T, a, { a = &*(dst as *const _ as *const _); let res = a.compare_exchange_weak( mem::transmute_copy(¤t), mem::transmute_copy(&new), Ordering::SeqCst, Ordering::SeqCst, ); match res { Ok(v) => Ok(mem::transmute_copy(&v)), Err(v) => Err(mem::transmute_copy(&v)), } }, { let guard = lock(dst as usize).write(); if byte_eq(&*dst, ¤t) { Ok(ptr::replace(dst, new)) } else { let val = ptr::read(dst); // The value hasn't been changed. Drop the guard without incrementing the stamp. guard.abort(); Err(val) } } } }