1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
//! A crate that provides support for the half-precision floating point type.
//!
//! This crate provides the `f16` type, which is an implementation of the IEEE 754-2008 `binary16`
//! floating point type. This 'half' precision floating point type is intended for efficient storage
//! where the full range and precision of a larger floating point value is not required. This is
//! especially useful for image storage formats.
//!
//! Because `f16` is primarily for efficient storage, floating point operations are not implemented.
//! Operations should be performed with `f32` or higher-precision types and converted to/from `f16`
//! as necessary.
//!
//! Some hardware architectures provide support for 16-bit floating point conversions. Enable the
//! `use-intrinsics` feature to use LLVM intrinsics for hardware conversions. This crate does no
//! checks on whether the hardware supports the feature. This feature currently only works on
//! nightly Rust due to a compiler feature gate.
//!
//! Support for `serde` crate `Serialize` and `Deserialize` traits is provided when the `serde`
//! feature is enabled. This adds a dependency on `serde` crate so is an optional feature that works
//! on Rust 1.15 or newer.
//!
//! The crate uses `#[no_std]` by default, so can be used in embedded environments without using the
//! Rust `std` library. A `std` feature is available, which enables additional utilities using the
//! `std` library, such as the `vec` module that provides zero-copy `Vec` conversions.

#![warn(
    missing_docs, missing_copy_implementations, missing_debug_implementations, trivial_casts,
    trivial_numeric_casts, unused_extern_crates, unused_import_braces
)]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "use-intrinsics", feature(link_llvm_intrinsics))]

#[cfg(feature = "serde")]
#[macro_use]
extern crate serde;

#[cfg(feature = "std")]
extern crate core;

use core::cmp::Ordering;
use core::fmt::{Debug, Display, Error, Formatter, LowerExp, UpperExp};
use core::num::{FpCategory, ParseFloatError};
use core::str::FromStr;

/// The 16-bit floating point type.
#[allow(non_camel_case_types)]
#[derive(Clone, Copy, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct f16(u16);

pub mod consts {
    //! Useful `f16` constants.

    use super::f16;

    /// 16-bit equivalent of `std::f32::DIGITS`
    pub const DIGITS: u32 = 3;
    /// 16-bit floating point epsilon. `9.7656e-4`
    pub const EPSILON: f16 = f16(0x1700u16);
    /// 16-bit positive infinity.
    pub const INFINITY: f16 = f16(0x7C00u16);
    /// 16-bit equivalent of `std::f32::MANTISSA_DIGITS`
    pub const MANTISSA_DIGITS: u32 = 11;
    /// Largest finite `f16` value. `65504`
    pub const MAX: f16 = f16(0x7BFF);
    /// 16-bit equivalent of `std::f32::MAX_10_EXP`
    pub const MAX_10_EXP: i32 = 9;
    /// 16-bit equivalent of `std::f32::MAX_EXP`
    pub const MAX_EXP: i32 = 15;
    /// Smallest finite `f16` value.
    pub const MIN: f16 = f16(0xFBFF);
    /// 16-bit equivalent of `std::f32::MIN_10_EXP`
    pub const MIN_10_EXP: i32 = -9;
    /// 16-bit equivalent of `std::f32::MIN_EXP`
    pub const MIN_EXP: i32 = -14;
    /// Smallest positive, normalized `f16` value. Approx. `6.10352e−5`
    pub const MIN_POSITIVE: f16 = f16(0x0400u16);
    /// 16-bit NaN.
    pub const NAN: f16 = f16(0xFE00u16);
    /// 16-bit negative infinity.
    pub const NEG_INFINITY: f16 = f16(0xFC00u16);
    /// 16-bit equivalent of `std::f32::RADIX`
    pub const RADIX: u32 = 2;

    /// 16-bit minimum positive subnormal value. Approx. `5.96046e−8`
    pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16);
    /// 16-bit maximum subnormal value. Approx. `6.09756e−5`
    pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16);

    /// 16-bit floating point `1.0`
    pub const ONE: f16 = f16(0x3C00u16);
    /// 16-bit floating point `0.0`
    pub const ZERO: f16 = f16(0x0000u16);
    /// 16-bit floating point `-0.0`
    pub const NEG_ZERO: f16 = f16(0x8000u16);

    /// Euler's number.
    pub const E: f16 = f16(0x4170u16);
    /// Archimedes' constant.
    pub const PI: f16 = f16(0x4248u16);
    /// 1.0/pi
    pub const FRAC_1_PI: f16 = f16(0x3518u16);
    /// 1.0/sqrt(2.0)
    pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16);
    /// 2.0/pi
    pub const FRAC_2_PI: f16 = f16(0x3918u16);
    /// 2.0/sqrt(pi)
    pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16);
    /// pi/2.0
    pub const FRAC_PI_2: f16 = f16(0x3E48u16);
    /// pi/3.0
    pub const FRAC_PI_3: f16 = f16(0x3C30u16);
    /// pi/4.0
    pub const FRAC_PI_4: f16 = f16(0x3A48u16);
    /// pi/6.0
    pub const FRAC_PI_6: f16 = f16(0x3830u16);
    /// pi/8.0
    pub const FRAC_PI_8: f16 = f16(0x3648u16);
    /// ln(10.0)
    pub const LN_10: f16 = f16(0x409Bu16);
    /// ln(2.0)
    pub const LN_2: f16 = f16(0x398Cu16);
    /// log10(e)
    pub const LOG10_E: f16 = f16(0x36F3u16);
    /// log2(e)
    pub const LOG2_E: f16 = f16(0x3DC5u16);
    /// sqrt(2)
    pub const SQRT_2: f16 = f16(0x3DA8u16);
}

impl f16 {
    /// Constructs a 16-bit floating point value from the raw bits.
    #[inline]
    pub fn from_bits(bits: u16) -> f16 {
        f16(bits)
    }

    /// Constructs a 16-bit floating point value from a 32-bit floating point value.
    ///
    /// If the 32-bit value is to large to fit in 16-bits, +/- infinity will result. NaN values are
    /// preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in
    /// +/- 0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals
    /// or +/- 0. All other values are truncated and rounded to the nearest representable 16-bit
    /// value.
    #[inline]
    pub fn from_f32(value: f32) -> f16 {
        f16(convert::f32_to_f16(value))
    }

    /// Constructs a 16-bit floating point value from a 64-bit floating point value.
    ///
    /// If the 64-bit value is to large to fit in 16-bits, +/- infinity will result. NaN values are
    /// preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in
    /// +/- 0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals
    /// or +/- 0. All other values are truncated and rounded to the nearest representable 16-bit
    /// value.
    #[inline]
    pub fn from_f64(value: f64) -> f16 {
        f16(convert::f64_to_f16(value))
    }

    /// Converts an `f16` into the underlying bit representation.
    #[inline]
    pub fn to_bits(self) -> u16 {
        self.0
    }

    /// Converts an `f16` into the underlying bit representation.
    #[deprecated(since = "1.2.0", note = "renamed to to_bits")]
    #[inline]
    pub fn as_bits(self) -> u16 {
        self.to_bits()
    }

    /// Converts an `f16` value in a `f32` value.
    ///
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
    /// in 32-bit floating point.
    #[inline]
    pub fn to_f32(self) -> f32 {
        convert::f16_to_f32(self.0)
    }

    /// Converts an `f16` value in a `f64` value.
    ///
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
    /// in 64-bit floating point.
    #[inline]
    pub fn to_f64(self) -> f64 {
        convert::f16_to_f64(self.0)
    }

    /// Returns `true` if this value is `NaN` and `false` otherwise.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use half::f16;
    ///
    /// let nan = half::consts::NAN;
    /// let f = f16::from_f32(7.0_f32);
    ///
    /// assert!(nan.is_nan());
    /// assert!(!f.is_nan());
    /// ```
    #[inline]
    pub fn is_nan(self) -> bool {
        self.0 & 0x7FFFu16 > 0x7C00u16
    }

    /// Returns `true` if this value is positive infinity or negative infinity and `false`
    /// otherwise.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use half::f16;
    ///
    /// let f = f16::from_f32(7.0f32);
    /// let inf = half::consts::INFINITY;
    /// let neg_inf = half::consts::NEG_INFINITY;
    /// let nan = half::consts::NAN;
    ///
    /// assert!(!f.is_infinite());
    /// assert!(!nan.is_infinite());
    ///
    /// assert!(inf.is_infinite());
    /// assert!(neg_inf.is_infinite());
    /// ```
    #[inline]
    pub fn is_infinite(self) -> bool {
        self.0 & 0x7FFFu16 == 0x7C00u16
    }

    /// Returns `true` if this number is neither infinite nor `NaN`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use half::f16;
    ///
    /// let f = f16::from_f32(7.0f32);
    /// let inf = half::consts::INFINITY;
    /// let neg_inf = half::consts::NEG_INFINITY;
    /// let nan = half::consts::NAN;
    ///
    /// assert!(f.is_finite());
    ///
    /// assert!(!nan.is_finite());
    /// assert!(!inf.is_finite());
    /// assert!(!neg_inf.is_finite());
    /// ```
    #[inline]
    pub fn is_finite(self) -> bool {
        self.0 & 0x7C00u16 != 0x7C00u16
    }

    /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use half::f16;
    ///
    /// let min = half::consts::MIN_POSITIVE;
    /// let max = half::consts::MAX;
    /// let lower_than_min = f16::from_f32(1.0e-10_f32);
    /// let zero = f16::from_f32(0.0_f32);
    ///
    /// assert!(min.is_normal());
    /// assert!(max.is_normal());
    ///
    /// assert!(!zero.is_normal());
    /// assert!(!half::consts::NAN.is_normal());
    /// assert!(!half::consts::INFINITY.is_normal());
    /// // Values between `0` and `min` are Subnormal.
    /// assert!(!lower_than_min.is_normal());
    /// ```
    #[inline]
    pub fn is_normal(self) -> bool {
        let exp = self.0 & 0x7C00u16;
        exp != 0x7C00u16 && exp != 0
    }

    /// Returns the floating point category of the number.
    ///
    /// If only one property is going to be tested, it is generally faster to use the specific
    /// predicate instead.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::num::FpCategory;
    /// use half::f16;
    ///
    /// let num = f16::from_f32(12.4_f32);
    /// let inf = half::consts::INFINITY;
    ///
    /// assert_eq!(num.classify(), FpCategory::Normal);
    /// assert_eq!(inf.classify(), FpCategory::Infinite);
    /// ```
    pub fn classify(self) -> FpCategory {
        let exp = self.0 & 0x7C00u16;
        let man = self.0 & 0x03FFu16;
        if exp == 0 {
            if man == 0 {
                FpCategory::Zero
            } else {
                FpCategory::Subnormal
            }
        } else if exp == 0x7C00u16 {
            if man == 0 {
                FpCategory::Infinite
            } else {
                FpCategory::Nan
            }
        } else {
            FpCategory::Normal
        }
    }

    /// Returns a number that represents the sign of `self`.
    ///
    /// * `1.0` if the number is positive, `+0.0` or `INFINITY`
    /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
    /// * `NAN` if the number is `NAN`
    ///
    /// # Examples
    ///
    /// ```rust
    /// use half::f16;
    ///
    /// let f = f16::from_f32(3.5_f32);
    ///
    /// assert_eq!(f.signum(), f16::from_f32(1.0));
    /// assert_eq!(half::consts::NEG_INFINITY.signum(), f16::from_f32(-1.0));
    ///
    /// assert!(half::consts::NAN.signum().is_nan());
    /// ```
    pub fn signum(self) -> f16 {
        if self.is_nan() {
            self
        } else if self.0 & 0x8000u16 != 0 {
            f16::from_f32(-1.0)
        } else {
            f16::from_f32(1.0)
        }
    }

    /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with
    /// positive sign bit and positive infinity.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use half::f16;
    ///
    /// let nan = half::consts::NAN;
    /// let f = f16::from_f32(7.0_f32);
    /// let g = f16::from_f32(-7.0_f32);
    ///
    /// assert!(f.is_sign_positive());
    /// assert!(!g.is_sign_positive());
    /// // `NaN` can be either positive or negative
    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
    /// ```
    #[inline]
    pub fn is_sign_positive(self) -> bool {
        self.0 & 0x8000u16 == 0
    }

    /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with
    /// negative sign bit and negative infinity.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use half::f16;
    ///
    /// let nan = half::consts::NAN;
    /// let f = f16::from_f32(7.0f32);
    /// let g = f16::from_f32(-7.0f32);
    ///
    /// assert!(!f.is_sign_negative());
    /// assert!(g.is_sign_negative());
    /// // `NaN` can be either positive or negative
    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
    /// ```
    #[inline]
    pub fn is_sign_negative(self) -> bool {
        self.0 & 0x8000u16 != 0
    }
}

impl From<f16> for f32 {
    fn from(x: f16) -> f32 {
        x.to_f32()
    }
}

impl From<f16> for f64 {
    fn from(x: f16) -> f64 {
        x.to_f64()
    }
}

impl From<i8> for f16 {
    fn from(x: i8) -> f16 {
        // Convert to f32, then to f16
        f16::from_f32(f32::from(x))
    }
}

impl From<u8> for f16 {
    fn from(x: u8) -> f16 {
        // Convert to f32, then to f16
        f16::from_f32(f32::from(x))
    }
}

impl PartialEq for f16 {
    fn eq(&self, other: &f16) -> bool {
        if self.is_nan() || other.is_nan() {
            false
        } else {
            (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
        }
    }
}

impl PartialOrd for f16 {
    fn partial_cmp(&self, other: &f16) -> Option<Ordering> {
        if self.is_nan() || other.is_nan() {
            None
        } else {
            let neg = self.0 & 0x8000u16 != 0;
            let other_neg = other.0 & 0x8000u16 != 0;
            match (neg, other_neg) {
                (false, false) => Some(self.0.cmp(&other.0)),
                (false, true) => {
                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
                        Some(Ordering::Equal)
                    } else {
                        Some(Ordering::Greater)
                    }
                }
                (true, false) => {
                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
                        Some(Ordering::Equal)
                    } else {
                        Some(Ordering::Less)
                    }
                }
                (true, true) => Some(other.0.cmp(&self.0)),
            }
        }
    }

    fn lt(&self, other: &f16) -> bool {
        if self.is_nan() || other.is_nan() {
            false
        } else {
            let neg = self.0 & 0x8000u16 != 0;
            let other_neg = other.0 & 0x8000u16 != 0;
            match (neg, other_neg) {
                (false, false) => self.0 < other.0,
                (false, true) => false,
                (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
                (true, true) => self.0 > other.0,
            }
        }
    }

    fn le(&self, other: &f16) -> bool {
        if self.is_nan() || other.is_nan() {
            false
        } else {
            let neg = self.0 & 0x8000u16 != 0;
            let other_neg = other.0 & 0x8000u16 != 0;
            match (neg, other_neg) {
                (false, false) => self.0 <= other.0,
                (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
                (true, false) => true,
                (true, true) => self.0 >= other.0,
            }
        }
    }

    fn gt(&self, other: &f16) -> bool {
        if self.is_nan() || other.is_nan() {
            false
        } else {
            let neg = self.0 & 0x8000u16 != 0;
            let other_neg = other.0 & 0x8000u16 != 0;
            match (neg, other_neg) {
                (false, false) => self.0 > other.0,
                (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
                (true, false) => false,
                (true, true) => self.0 < other.0,
            }
        }
    }

    fn ge(&self, other: &f16) -> bool {
        if self.is_nan() || other.is_nan() {
            false
        } else {
            let neg = self.0 & 0x8000u16 != 0;
            let other_neg = other.0 & 0x8000u16 != 0;
            match (neg, other_neg) {
                (false, false) => self.0 >= other.0,
                (false, true) => true,
                (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
                (true, true) => self.0 <= other.0,
            }
        }
    }
}

impl FromStr for f16 {
    type Err = ParseFloatError;
    fn from_str(src: &str) -> Result<f16, ParseFloatError> {
        f32::from_str(src).map(|x| f16::from_f32(x))
    }
}

impl Debug for f16 {
    fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
        write!(f, "0x{:X}", self.0)
    }
}

impl Display for f16 {
    fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
        write!(f, "{}", self.to_f32())
    }
}

impl LowerExp for f16 {
    fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
        write!(f, "{:e}", self.to_f32())
    }
}

impl UpperExp for f16 {
    fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
        write!(f, "{:E}", self.to_f32())
    }
}

#[cfg(feature = "use-intrinsics")]
mod convert {
    extern "C" {
        #[link_name = "llvm.convert.to.fp16.f32"]
        fn convert_to_fp16_f32(f: f32) -> u16;

        #[link_name = "llvm.convert.to.fp16.f64"]
        fn convert_to_fp16_f64(f: f64) -> u16;

        #[link_name = "llvm.convert.from.fp16.f32"]
        fn convert_from_fp16_f32(i: u16) -> f32;

        #[link_name = "llvm.convert.from.fp16.f64"]
        fn convert_from_fp16_f64(i: u16) -> f64;
    }

    #[inline(always)]
    pub fn f32_to_f16(f: f32) -> u16 {
        unsafe { convert_to_fp16_f32(f) }
    }

    #[inline(always)]
    pub fn f64_to_f16(f: f64) -> u16 {
        unsafe { convert_to_fp16_f64(f) }
    }

    #[inline(always)]
    pub fn f16_to_f32(i: u16) -> f32 {
        unsafe { convert_from_fp16_f32(i) }
    }

    #[inline(always)]
    pub fn f16_to_f64(i: u16) -> f64 {
        unsafe { convert_from_fp16_f64(i) }
    }
}

#[cfg(not(feature = "use-intrinsics"))]
mod convert {
    use core;
    use core::mem;

    pub fn f32_to_f16(value: f32) -> u16 {
        // Convert to raw bytes
        let x: u32 = unsafe { mem::transmute(value) };

        // Check for signed zero
        if x & 0x7FFFFFFFu32 == 0 {
            return (x >> 16) as u16;
        }

        // Extract IEEE754 components
        let sign = x & 0x80000000u32;
        let exp = x & 0x7F800000u32;
        let man = x & 0x007FFFFFu32;

        // Subnormals will underflow, so return signed zero
        if exp == 0 {
            return (sign >> 16) as u16;
        }

        // Check for all exponent bits being set, which is Infinity or NaN
        if exp == 0x7F800000u32 {
            // A mantissa of zero is a signed Infinity
            if man == 0 {
                return ((sign >> 16) | 0x7C00u32) as u16;
            }
            // Otherwise, this is NaN
            return ((sign >> 16) | 0x7E00u32) as u16;
        }

        // The number is normalized, start assembling half precision version
        let half_sign = sign >> 16;
        // Unbias the exponent, then bias for half precision
        let unbiased_exp = ((exp >> 23) as i32) - 127;
        let half_exp = unbiased_exp + 15;

        // Check for exponent overflow, return +infinity
        if half_exp >= 0x1F {
            return (half_sign | 0x7C00u32) as u16;
        }

        // Check for underflow
        if half_exp <= 0 {
            // Check mantissa for what we can do
            if 14 - half_exp > 24 {
                // No rounding possibility, so this is a full underflow, return signed zero
                return half_sign as u16;
            }
            // Don't forget about hidden leading mantissa bit when assembling mantissa
            let man = man | 0x00800000u32;
            let mut half_man = man >> (14 - half_exp);
            // Check for rounding
            if (man >> (13 - half_exp)) & 0x1u32 != 0 {
                half_man += 1;
            }
            // No exponent for subnormals
            return (half_sign | half_man) as u16;
        }

        // Rebias the exponent
        let half_exp = (half_exp as u32) << 10;
        let half_man = man >> 13;
        // Check for rounding
        if man & 0x00001000u32 != 0 {
            // Round it
            ((half_sign | half_exp | half_man) + 1) as u16
        } else {
            (half_sign | half_exp | half_man) as u16
        }
    }

    pub fn f64_to_f16(value: f64) -> u16 {
        // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always
        // be lost on half-precision.
        let val: u64 = unsafe { mem::transmute(value) };
        let x = (val >> 32) as u32;

        // Check for signed zero
        if x & 0x7FFFFFFFu32 == 0 {
            return (x >> 16) as u16;
        }

        // Extract IEEE754 components
        let sign = x & 0x80000000u32;
        let exp = x & 0x7FF00000u32;
        let man = x & 0x000FFFFFu32;

        // Subnormals will underflow, so return signed zero
        if exp == 0 {
            return (sign >> 16) as u16;
        }

        // Check for all exponent bits being set, which is Infinity or NaN
        if exp == 0x7FF00000u32 {
            // A mantissa of zero is a signed Infinity. We also have to check the last 32 bits.
            if (man == 0) && (val as u32 == 0) {
                return ((sign >> 16) | 0x7C00u32) as u16;
            }
            // Otherwise, this is NaN
            return ((sign >> 16) | 0x7E00u32) as u16;
        }

        // The number is normalized, start assembling half precision version
        let half_sign = sign >> 16;
        // Unbias the exponent, then bias for half precision
        let unbiased_exp = ((exp >> 20) as i64) - 1023;
        let half_exp = unbiased_exp + 15;

        // Check for exponent overflow, return +infinity
        if half_exp >= 0x1F {
            return (half_sign | 0x7C00u32) as u16;
        }

        // Check for underflow
        if half_exp <= 0 {
            // Check mantissa for what we can do
            if 10 - half_exp > 21 {
                // No rounding possibility, so this is a full underflow, return signed zero
                return half_sign as u16;
            }
            // Don't forget about hidden leading mantissa bit when assembling mantissa
            let man = man | 0x00100000u32;
            let mut half_man = man >> (11 - half_exp);
            // Check for rounding
            if (man >> (10 - half_exp)) & 0x1u32 != 0 {
                half_man += 1;
            }
            // No exponent for subnormals
            return (half_sign | half_man) as u16;
        }

        // Rebias the exponent
        let half_exp = (half_exp as u32) << 10;
        let half_man = man >> 10;
        // Check for rounding
        if man & 0x00000200u32 != 0 {
            // Round it
            ((half_sign | half_exp | half_man) + 1) as u16
        } else {
            (half_sign | half_exp | half_man) as u16
        }
    }

    pub fn f16_to_f32(i: u16) -> f32 {
        // Check for signed zero
        if i & 0x7FFFu16 == 0 {
            return unsafe { mem::transmute((i as u32) << 16) };
        }

        let half_sign = (i & 0x8000u16) as u32;
        let half_exp = (i & 0x7C00u16) as u32;
        let half_man = (i & 0x03FFu16) as u32;

        // Check for an infinity or NaN when all exponent bits set
        if half_exp == 0x7C00u32 {
            // Check for signed infinity if mantissa is zero
            if half_man == 0 {
                return unsafe { mem::transmute((half_sign << 16) | 0x7F800000u32) };
            } else {
                // NaN, only 1st mantissa bit is set
                return core::f32::NAN;
            }
        }

        // Calculate single-precision components with adjusted exponent
        let sign = half_sign << 16;
        // Unbias exponent
        let unbiased_exp = ((half_exp as i32) >> 10) - 15;

        // Check for subnormals, which will be normalized by adjusting exponent
        if half_exp == 0 {
            // Calculate how much to adjust the exponent by
            let e = (half_man as u16).leading_zeros() - 6;

            // Rebias and adjust exponent
            let exp = (127 - 15 - e) << 23;
            let man = (half_man << (14 + e)) & 0x7F_FF_FFu32;
            return unsafe { mem::transmute(sign | exp | man) };
        }

        // Rebias exponent for a normalized normal
        let exp = ((unbiased_exp + 127) as u32) << 23;
        let man = (half_man & 0x03FFu32) << 13;
        unsafe { mem::transmute(sign | exp | man) }
    }

    pub fn f16_to_f64(i: u16) -> f64 {
        // Check for signed zero
        if i & 0x7FFFu16 == 0 {
            return unsafe { mem::transmute((i as u64) << 48) };
        }

        let half_sign = (i & 0x8000u16) as u64;
        let half_exp = (i & 0x7C00u16) as u64;
        let half_man = (i & 0x03FFu16) as u64;

        // Check for an infinity or NaN when all exponent bits set
        if half_exp == 0x7C00u64 {
            // Check for signed infinity if mantissa is zero
            if half_man == 0 {
                return unsafe { mem::transmute((half_sign << 48) | 0x7FF0000000000000u64) };
            } else {
                // NaN, only 1st mantissa bit is set
                return core::f64::NAN;
            }
        }

        // Calculate double-precision components with adjusted exponent
        let sign = half_sign << 48;
        // Unbias exponent
        let unbiased_exp = ((half_exp as i64) >> 10) - 15;

        // Check for subnormals, which will be normalized by adjusting exponent
        if half_exp == 0 {
            // Calculate how much to adjust the exponent by
            let e = (half_man as u16).leading_zeros() - 6;

            // Rebias and adjust exponent
            let exp = ((1023 - 15 - e) as u64) << 52;
            let man = (half_man << (43 + e)) & 0xF_FFFF_FFFF_FFFFu64;
            return unsafe { mem::transmute(sign | exp | man) };
        }

        // Rebias exponent for a normalized normal
        let exp = ((unbiased_exp + 1023) as u64) << 52;
        let man = (half_man & 0x03FFu64) << 42;
        unsafe { mem::transmute(sign | exp | man) }
    }
}

/// Contains utility functions to convert between slices of `u16` bits and `f16` numbers.
pub mod slice {
    use super::f16;
    use core::slice;

    /// Reinterpret a mutable slice of `u16` bits as a mutable slice of `f16` numbers.
    // The transmuted slice has the same life time as the original,
    // Which prevents mutating the borrowed `mut [u16]` argument
    // As long as the returned `mut [f16]` is borrowed.
    #[inline]
    pub fn from_bits_mut<'s>(bits: &'s mut [u16]) -> &'s mut [f16] {
        let pointer = bits.as_ptr() as *mut f16;
        let length = bits.len();
        unsafe { slice::from_raw_parts_mut(pointer, length) }
    }

    /// Reinterpret a mutable slice of `f16` numbers as a mutable slice of `u16` bits.
    // The transmuted slice has the same life time as the original,
    // Which prevents mutating the borrowed `mut [f16]` argument
    // As long as the returned `mut [u16]` is borrowed.
    #[inline]
    pub fn to_bits_mut<'s>(bits: &'s mut [f16]) -> &'s mut [u16] {
        let pointer = bits.as_ptr() as *mut u16;
        let length = bits.len();
        unsafe { slice::from_raw_parts_mut(pointer, length) }
    }

    /// Reinterpret a slice of `u16` bits as a slice of `f16` numbers.
    // The transmuted slice has the same life time as the original
    #[inline]
    pub fn from_bits<'s>(bits: &'s [u16]) -> &'s [f16] {
        let pointer = bits.as_ptr() as *const f16;
        let length = bits.len();
        unsafe { slice::from_raw_parts(pointer, length) }
    }

    /// Reinterpret a slice of `f16` numbers as a slice of `u16` bits.
    // The transmuted slice has the same life time as the original
    #[inline]
    pub fn to_bits<'s>(bits: &'s [f16]) -> &'s [u16] {
        let pointer = bits.as_ptr() as *const u16;
        let length = bits.len();
        unsafe { slice::from_raw_parts(pointer, length) }
    }
}

/// Contains utility functions to convert between vectors of `u16` bits and `f16` vectors.
///
/// This module is only available with the `std` feature.
#[cfg(feature = "std")]
pub mod vec {
    use super::f16;
    use core::mem;

    /// Converts a vector of `u16` elements into a vector of `f16` elements.
    /// This function merely reinterprets the contents of the vector,
    /// so it's a zero-copy operation.
    #[inline]
    pub fn from_bits(bits: Vec<u16>) -> Vec<f16> {
        let mut bits = bits;

        // An f16 array has same length and capacity as u16 array
        let length = bits.len();
        let capacity = bits.capacity();

        // Actually reinterpret the contents of the Vec<u16> as f16,
        // knowing that structs are represented as only their members in memory,
        // which is the u16 part of `f16(u16)`
        let pointer = bits.as_mut_ptr() as *mut f16;

        // Prevent running a destructor on the old Vec<u16>, so the pointer won't be deleted
        mem::forget(bits);

        // Finally construct a new Vec<f16> from the raw pointer
        unsafe { Vec::from_raw_parts(pointer, length, capacity) }
    }

    /// Converts a vector of `f16` elements into a vector of `u16` elements.
    /// This function merely reinterprets the contents of the vector,
    /// so it's a zero-copy operation.
    #[inline]
    pub fn to_bits(numbers: Vec<f16>) -> Vec<u16> {
        let mut numbers = numbers;

        // An f16 array has same length and capacity as u16 array
        let length = numbers.len();
        let capacity = numbers.capacity();

        // Actually reinterpret the contents of the Vec<f16> as u16,
        // knowing that structs are represented as only their members in memory,
        // which is the u16 part of `f16(u16)`
        let pointer = numbers.as_mut_ptr() as *mut u16;

        // Prevent running a destructor on the old Vec<u16>, so the pointer won't be deleted
        mem::forget(numbers);

        // Finally construct a new Vec<f16> from the raw pointer
        unsafe { Vec::from_raw_parts(pointer, length, capacity) }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use core;
    use core::cmp::Ordering;

    #[test]
    fn test_f16_consts_from_f32() {
        let one = f16::from_f32(1.0);
        let zero = f16::from_f32(0.0);
        let neg_zero = f16::from_f32(-0.0);
        let inf = f16::from_f32(core::f32::INFINITY);
        let neg_inf = f16::from_f32(core::f32::NEG_INFINITY);
        let nan = f16::from_f32(core::f32::NAN);

        assert_eq!(consts::ONE, one);
        assert_eq!(consts::ZERO, zero);
        assert_eq!(consts::NEG_ZERO, neg_zero);
        assert_eq!(consts::INFINITY, inf);
        assert_eq!(consts::NEG_INFINITY, neg_inf);
        assert!(nan.is_nan());
        assert!(consts::NAN.is_nan());

        let e = f16::from_f32(core::f32::consts::E);
        let pi = f16::from_f32(core::f32::consts::PI);
        let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI);
        let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
        let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI);
        let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
        let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2);
        let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3);
        let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4);
        let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6);
        let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8);
        let ln_10 = f16::from_f32(core::f32::consts::LN_10);
        let ln_2 = f16::from_f32(core::f32::consts::LN_2);
        let log10_e = f16::from_f32(core::f32::consts::LOG10_E);
        let log2_e = f16::from_f32(core::f32::consts::LOG2_E);
        let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2);

        assert_eq!(consts::E, e);
        assert_eq!(consts::PI, pi);
        assert_eq!(consts::FRAC_1_PI, frac_1_pi);
        assert_eq!(consts::FRAC_1_SQRT_2, frac_1_sqrt_2);
        assert_eq!(consts::FRAC_2_PI, frac_2_pi);
        assert_eq!(consts::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
        assert_eq!(consts::FRAC_PI_2, frac_pi_2);
        assert_eq!(consts::FRAC_PI_3, frac_pi_3);
        assert_eq!(consts::FRAC_PI_4, frac_pi_4);
        assert_eq!(consts::FRAC_PI_6, frac_pi_6);
        assert_eq!(consts::FRAC_PI_8, frac_pi_8);
        assert_eq!(consts::LN_10, ln_10);
        assert_eq!(consts::LN_2, ln_2);
        assert_eq!(consts::LOG10_E, log10_e);
        assert_eq!(consts::LOG2_E, log2_e);
        assert_eq!(consts::SQRT_2, sqrt_2);
    }

    #[test]
    fn test_f16_consts_from_f64() {
        let one = f16::from_f64(1.0);
        let zero = f16::from_f64(0.0);
        let neg_zero = f16::from_f64(-0.0);
        let inf = f16::from_f64(core::f64::INFINITY);
        let neg_inf = f16::from_f64(core::f64::NEG_INFINITY);
        let nan = f16::from_f64(core::f64::NAN);

        assert_eq!(consts::ONE, one);
        assert_eq!(consts::ZERO, zero);
        assert_eq!(consts::NEG_ZERO, neg_zero);
        assert_eq!(consts::INFINITY, inf);
        assert_eq!(consts::NEG_INFINITY, neg_inf);
        assert!(nan.is_nan());
        assert!(consts::NAN.is_nan());

        let e = f16::from_f64(core::f64::consts::E);
        let pi = f16::from_f64(core::f64::consts::PI);
        let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI);
        let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
        let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI);
        let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
        let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2);
        let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3);
        let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4);
        let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6);
        let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8);
        let ln_10 = f16::from_f64(core::f64::consts::LN_10);
        let ln_2 = f16::from_f64(core::f64::consts::LN_2);
        let log10_e = f16::from_f64(core::f64::consts::LOG10_E);
        let log2_e = f16::from_f64(core::f64::consts::LOG2_E);
        let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2);

        assert_eq!(consts::E, e);
        assert_eq!(consts::PI, pi);
        assert_eq!(consts::FRAC_1_PI, frac_1_pi);
        assert_eq!(consts::FRAC_1_SQRT_2, frac_1_sqrt_2);
        assert_eq!(consts::FRAC_2_PI, frac_2_pi);
        assert_eq!(consts::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
        assert_eq!(consts::FRAC_PI_2, frac_pi_2);
        assert_eq!(consts::FRAC_PI_3, frac_pi_3);
        assert_eq!(consts::FRAC_PI_4, frac_pi_4);
        assert_eq!(consts::FRAC_PI_6, frac_pi_6);
        assert_eq!(consts::FRAC_PI_8, frac_pi_8);
        assert_eq!(consts::LN_10, ln_10);
        assert_eq!(consts::LN_2, ln_2);
        assert_eq!(consts::LOG10_E, log10_e);
        assert_eq!(consts::LOG2_E, log2_e);
        assert_eq!(consts::SQRT_2, sqrt_2);
    }

    #[test]
    fn test_nan_conversion() {
        use core::mem;
        let nan64: f64;
        let neg_nan64: f64;
        let nan32: f32;
        let neg_nan32: f32;
        unsafe {
            nan64 = mem::transmute(0x7ff0_0000_0000_0001u64);
            neg_nan64 = mem::transmute(0xfff0_0000_0000_0001u64);
            nan32 = mem::transmute(0x7f80_0001u32);
            neg_nan32 = mem::transmute(0xff80_0001u32);
        }
        let nan32_from_64 = nan64 as f32;
        let neg_nan32_from_64 = neg_nan64 as f32;
        let nan16_from_64 = f16::from_f64(nan64);
        let neg_nan16_from_64 = f16::from_f64(neg_nan64);
        let nan16_from_32 = f16::from_f32(nan32);
        let neg_nan16_from_32 = f16::from_f32(neg_nan32);

        assert!(nan64.is_nan());
        assert!(neg_nan64.is_nan());
        assert!(nan32.is_nan());
        assert!(neg_nan32.is_nan());
        assert!(nan32_from_64.is_nan());
        assert!(neg_nan32_from_64.is_nan());
        assert!(nan16_from_64.is_nan());
        assert!(neg_nan16_from_64.is_nan());
        assert!(nan16_from_32.is_nan());
        assert!(neg_nan16_from_32.is_nan());

        let sign64 = 1u64 << 63;
        let sign32 = 1u32 << 31;
        let sign16 = 1u16 << 15;
        let nan64_u: u64;
        let neg_nan64_u: u64;
        let nan32_u: u32;
        let neg_nan32_u: u32;
        let nan32_from_64_u: u32;
        let neg_nan32_from_64_u: u32;
        let nan16_from_64_u: u16;
        let neg_nan16_from_64_u: u16;
        let nan16_from_32_u: u16;
        let neg_nan16_from_32_u: u16;
        unsafe {
            nan64_u = mem::transmute(nan64);
            neg_nan64_u = mem::transmute(neg_nan64);
            nan32_u = mem::transmute(nan32);
            neg_nan32_u = mem::transmute(neg_nan32);
            nan32_from_64_u = mem::transmute(nan32_from_64);
            neg_nan32_from_64_u = mem::transmute(neg_nan32_from_64);
            nan16_from_64_u = mem::transmute(nan16_from_64);
            neg_nan16_from_64_u = mem::transmute(neg_nan16_from_64);
            nan16_from_32_u = mem::transmute(nan16_from_32);
            neg_nan16_from_32_u = mem::transmute(neg_nan16_from_32);
        }
        assert_eq!(nan64_u & sign64, 0);
        assert_eq!(neg_nan64_u & sign64, sign64);
        assert_eq!(nan32_u & sign32, 0);
        assert_eq!(neg_nan32_u & sign32, sign32);
        assert_eq!(nan32_from_64_u & sign32, 0);
        assert_eq!(neg_nan32_from_64_u & sign32, sign32);
        assert_eq!(nan16_from_64_u & sign16, 0);
        assert_eq!(neg_nan16_from_64_u & sign16, sign16);
        assert_eq!(nan16_from_32_u & sign16, 0);
        assert_eq!(neg_nan16_from_32_u & sign16, sign16);
    }

    #[test]
    fn test_f16_to_f32() {
        let f = f16::from_f32(7.0);
        assert_eq!(f.to_f32(), 7.0f32);

        // 7.1 is NOT exactly representable in 16-bit, it's rounded
        let f = f16::from_f32(7.1);
        let diff = (f.to_f32() - 7.1f32).abs();
        assert!(diff <= consts::EPSILON.to_f32());

        assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24));
        assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24));

        assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24)));
        assert_eq!(
            f16::from_bits(0x0000_0005),
            f16::from_f32(5.0 * 2.0f32.powi(-24))
        );
    }

    #[test]
    fn test_f16_to_f64() {
        let f = f16::from_f64(7.0);
        assert_eq!(f.to_f64(), 7.0f64);

        // 7.1 is NOT exactly representable in 16-bit, it's rounded
        let f = f16::from_f64(7.1);
        let diff = (f.to_f64() - 7.1f64).abs();
        assert!(diff <= consts::EPSILON.to_f64());

        assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24));
        assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24));

        assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24)));
        assert_eq!(
            f16::from_bits(0x0000_0005),
            f16::from_f64(5.0 * 2.0f64.powi(-24))
        );
    }

    #[test]
    fn test_comparisons() {
        let zero = f16::from_f64(0.0);
        let one = f16::from_f64(1.0);
        let neg_zero = f16::from_f64(-0.0);
        let neg_one = f16::from_f64(-1.0);

        assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
        assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
        assert!(zero == neg_zero);
        assert!(neg_zero == zero);
        assert!(!(zero != neg_zero));
        assert!(!(neg_zero != zero));
        assert!(!(zero < neg_zero));
        assert!(!(neg_zero < zero));
        assert!(zero <= neg_zero);
        assert!(neg_zero <= zero);
        assert!(!(zero > neg_zero));
        assert!(!(neg_zero > zero));
        assert!(zero >= neg_zero);
        assert!(neg_zero >= zero);

        assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
        assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
        assert!(!(one == neg_zero));
        assert!(!(neg_zero == one));
        assert!(one != neg_zero);
        assert!(neg_zero != one);
        assert!(!(one < neg_zero));
        assert!(neg_zero < one);
        assert!(!(one <= neg_zero));
        assert!(neg_zero <= one);
        assert!(one > neg_zero);
        assert!(!(neg_zero > one));
        assert!(one >= neg_zero);
        assert!(!(neg_zero >= one));

        assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
        assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
        assert!(!(one == neg_one));
        assert!(!(neg_one == one));
        assert!(one != neg_one);
        assert!(neg_one != one);
        assert!(!(one < neg_one));
        assert!(neg_one < one);
        assert!(!(one <= neg_one));
        assert!(neg_one <= one);
        assert!(one > neg_one);
        assert!(!(neg_one > one));
        assert!(one >= neg_one);
        assert!(!(neg_one >= one));
    }

    #[test]
    fn test_slice_conversions() {
        use consts::*;
        let bits = &[
            E.to_bits(),
            PI.to_bits(),
            EPSILON.to_bits(),
            FRAC_1_SQRT_2.to_bits(),
        ];
        let numbers = &[E, PI, EPSILON, FRAC_1_SQRT_2];

        // Convert from bits to numbers
        let from_bits = slice::from_bits(bits);
        assert_slice_contents_eq(from_bits, numbers);

        // Convert from numbers back to bits
        let to_bits = slice::to_bits(from_bits);
        assert_slice_contents_eq(to_bits, bits);
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_vec_conversions() {
        use consts::*;
        let numbers = vec![E, PI, EPSILON, FRAC_1_SQRT_2];
        let bits = vec![
            E.to_bits(),
            PI.to_bits(),
            EPSILON.to_bits(),
            FRAC_1_SQRT_2.to_bits(),
        ];
        let bits_cloned = bits.clone();

        // Convert from bits to numbers
        let from_bits = vec::from_bits(bits);
        assert_slice_contents_eq(&from_bits, &numbers);

        // Convert from numbers back to bits
        let to_bits = vec::to_bits(from_bits);
        assert_slice_contents_eq(&to_bits, &bits_cloned);
    }

    fn assert_slice_contents_eq<T: PartialEq + core::fmt::Debug>(a: &[T], b: &[T]) {
        // Checks only pointer and len,
        // but we know these are the same
        // because we just transmuted them, so
        assert_eq!(a, b);

        // We need to perform manual content equality checks
        for (a, b) in a.iter().zip(b.iter()) {
            assert_eq!(a, b);
        }
    }

    #[test]
    fn test_mutablility(){
        use consts::*;
        let mut bits_array = [ PI.to_bits() ];
        let bits = &mut bits_array[..];

        {   // would not compile without these braces
            // TODO: add automated test to check that it does not compile without braces
            let numbers = slice::from_bits_mut(bits);
            numbers[0] = E;
        }

        assert_eq!(bits, &[ E.to_bits() ]);

        bits[0] = LN_2.to_bits();
        assert_eq!(bits, &[ LN_2.to_bits() ]);
    }
}