1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
//          Copyright Corey Richardson 2015
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)

//! A real-time hierarchical profiler.
//!
//! # What is hierarchical profiling?
//!
//! Hierarchical profiling is based on the observation that games are typically
//! organized into a "tree" of behavior. You have an AI system that does path
//! planning, making tactical decisions, etc. You have a physics system that does
//! collision detection, rigid body dynamics, etc. A tree might look like:
//!
//! - Physics
//!     - Collision detection
//!         - Broad phase
//!         - Narrow phase
//!     - Fluid simulation
//!     - Rigid body simulation
//!         - Collision resolution
//!         - Update positions
//! - AI
//!     - Path planning
//!     - Combat tactics
//!     - Build queue maintenance
//! - Render
//!     - Frustum culling
//!     - Draw call sorting
//!     - Draw call submission
//!     - GPU wait
//!
//! A hierarchical profiler will annotate this tree with how much time each step
//! took. This is an extension of timer-based profiling, where a timer is used to
//! measure how long a block of code takes to execute. Rather than coding up a
//! one-time timer, you merely call `Profiler::enter("description of thing")` and
//! a new entry will be made in the profile tree.
//!
//! The idea came from a 2002 article in Game Programming Gems 3, "Real-Time
//! Hierarchical Profiling" by Greg Hjelstrom and Byon Garrabrant from Westwood
//! Studios. They report having thousands of profile nodes active at a time.
//!
//! There are two major ways to use this library: with explicit profilers, and with an implicit
//! profiler.
//!
//! # Implicit (thread-local) profiler
//!
//! To use the implicit profiler, call `hprof::start_frame()`, `hprof::end_frame()`, and
//! `hprof::enter("name")`. Destructors will take care of the rest. You can access the profiler
//! using `hprof::profiler()`.
//!
//! # Explicit profilers
//!
//! Use `Profiler::new()` and pass it around/store it somewhere (for example, using
//! [`current`](https://github.com/PistonDevelopers/current)).

#[macro_use]
extern crate log;
extern crate clock_ticks;

use std::cell::{Cell, RefCell};
use std::rc::Rc;

thread_local!(static HPROF: Profiler = Profiler::new("root profiler"));

/// A single tree of profile data.
pub struct Profiler {
    root: Rc<ProfileNode>,
    current: RefCell<Rc<ProfileNode>>,
    enabled: Cell<bool>,
}

/// A "guard" for calling `Profiler::leave` when it is destroyed.
pub struct ProfileGuard<'a>(&'a Profiler);
impl<'a> Drop for ProfileGuard<'a> {
    fn drop(&mut self) {
        self.0.leave()
    }
}

macro_rules! early_leave {
    ($slf:ident) => (if $slf.enabled.get() == false { return })
}

impl Profiler {
    /// Create a new profiler with the given name for the root node.
    pub fn new(name: &'static str) -> Profiler {
        let root = Rc::new(ProfileNode::new(None, name));
        root.call();
        Profiler { root: root.clone(), current: RefCell::new(root), enabled: Cell::new(true) }
    }

    /// Enter a profile node for `name`, returning a guard object that will `leave` on destruction.
    pub fn enter(&self, name: &'static str) -> ProfileGuard {
        self.enter_noguard(name);
        ProfileGuard(self)
    }

    /// Enter a profile node for `name`.
    pub fn enter_noguard(&self, name: &'static str) {
        early_leave!(self);
        {
            let mut curr = self.current.borrow_mut();
            if curr.name != name {
                *curr = curr.make_child(curr.clone(), name);
            }
        }
        self.current.borrow().call();
    }

    /// Leave the current profile node.
    pub fn leave(&self) {
        early_leave!(self);
        let mut curr = self.current.borrow_mut();
        if curr.ret() == true {
            if let Some(parent) = curr.parent.clone() {
                *curr = parent;
            }
        }
    }

    /// Print out the current timing information in a very naive way.
    pub fn print_timing(&self) {
        println!("Timing information for {}:", self.root.name);
        for child in &*self.root.children.borrow() {
            child.print(2);
        }
    }

    /// Return the root profile node for inspection.
    ///
    /// This root will always be valid and reflect the current state of the `Profiler`.
    /// It is not advised to inspect the data between calls to `start_frame` and `end_frame`.
    pub fn root(&self) -> Rc<ProfileNode> {
        self.root.clone()
    }

    /// Finish a frame.
    ///
    /// Logs an error if there are pending `leave` calls, and later attempts to
    /// print timing data will be met with sadness in the form of `NaN`s.
    pub fn end_frame(&self) {
        early_leave!(self);
        if &*self.root as *const ProfileNode as usize != &**self.current.borrow() as *const ProfileNode as usize {
            error!("Pending `leave` calls on Profiler::frame");
        } else {
            self.root.ret();
        }
    }

    /// Start a frame.
    ///
    /// Resets timing data. Logs an error if there are pending `leave` calls, but there are
    /// otherwise no ill effects.
    pub fn start_frame(&self) {
        early_leave!(self);
        if &*self.root as *const ProfileNode as usize != &**self.current.borrow() as *const ProfileNode as usize {
            error!("Pending `leave` calls on Profiler::frame");
        }
        *self.current.borrow_mut() = self.root.clone();
        self.root.reset();
        self.root.call();
    }

    /// Disable the profiler.
    ///
    /// All calls until `enable` will do nothing.
    pub fn disable(&self) {
        self.enabled.set(false);
    }

    /// Enable the profiler.
    ///
    /// Calls will take effect until `disable` is called.
    pub fn enable(&self) {
        self.enabled.set(true);
    }

    /// Toggle the profiler enabledness.
    pub fn toggle(&self) {
        self.enabled.set(!self.enabled.get());
    }

}

/// A single node in the profile tree.
///
/// *NOTE*: While the fields are public and are a cell, it is not advisable to modify them.
pub struct ProfileNode {
    pub name: &'static str,
    /// Number of calls made to this node.
    pub calls: Cell<u32>,
    /// Total time in ns used by this node and all of its children.
    ///
    /// Computed after the last pending `ret`.
    pub total_time: Cell<u64>,
    /// Timestamp in ns when the first `call` was made to this node.
    pub start_time: Cell<u64>,
    /// Number of recursive calls made to this node since the first `call`.
    pub recursion: Cell<u32>,
    /// Parent in the profile tree.
    pub parent: Option<Rc<ProfileNode>>,
    // TODO: replace this Vec with an intrusive list. Use containerof?
    /// Child nodes.
    pub children: RefCell<Vec<Rc<ProfileNode>>>,
}

impl ProfileNode {
    pub fn new(parent: Option<Rc<ProfileNode>>, name: &'static str) -> ProfileNode {
        ProfileNode {
            name: name,
            calls: Cell::new(0),
            total_time: Cell::new(0),
            start_time: Cell::new(0),
            recursion: Cell::new(0),
            parent: parent,
            children: RefCell::new(Vec::new())
        }
    }

    /// Reset this node and its children, seting relevant fields to 0.
    pub fn reset(&self) {
        self.calls.set(0);
        self.total_time.set(0);
        self.start_time.set(0);
        self.recursion.set(0);
        for child in &*self.children.borrow() {
            child.reset()
        }
    }

    /// Create a child named `name`.
    pub fn make_child(&self, me: Rc<ProfileNode>, name: &'static str) -> Rc<ProfileNode> {
        let mut children = self.children.borrow_mut();
        for child in &*children {
            if child.name == name {
                return child.clone()
            }
        }
        let new = Rc::new(ProfileNode::new(Some(me), name));
        children.push(new.clone());
        new
    }

    /// Enter this profile node.
    pub fn call(&self) {
        self.calls.set(self.calls.get() + 1);
        let rec = self.recursion.get();
        if rec == 0 {
            self.start_time.set(clock_ticks::precise_time_ns());
        }
        self.recursion.set(rec + 1);
    }

    /// Return from this profile node, returning true if there are no pending recursive calls.
    pub fn ret(&self) -> bool {
        let rec = self.recursion.get();
        if rec == 1 {
            let time = clock_ticks::precise_time_ns();
            let durr = time - self.start_time.get();
            self.total_time.set(self.total_time.get() + durr);
        }
        self.recursion.set(rec - 1);
        rec == 1
    }

    /// Print out the current timing information in a very naive way.
    ///
    /// Uses `indent` to determine how deep to indent the line.
    pub fn print(&self, indent: u32) {
        for _ in 0..indent {
            print!(" ");
        }
        let parent_time = self.parent
                              .as_ref()
                              .map(|p| p.total_time.get())
                              .unwrap_or(self.total_time.get()) as f64;
        let percent = 100.0 * (self.total_time.get() as f64 / parent_time);
        if percent.is_infinite() {
            println!("{name} - {calls} * {each} = {total} @ {hz:.1}hz",
                name  = self.name,
                calls = self.calls.get(),
                each = Nanoseconds((self.total_time.get() as f64 / self.calls.get() as f64) as u64),
                total = Nanoseconds(self.total_time.get()),
                hz = self.calls.get() as f64 / self.total_time.get() as f64 * 1e9f64
            );
        } else {
            println!("{name} - {calls} * {each} = {total} ({percent:.1}%)",
                name  = self.name,
                calls = self.calls.get(),
                each = Nanoseconds((self.total_time.get() as f64 / self.calls.get() as f64) as u64),
                total = Nanoseconds(self.total_time.get()),
                percent = percent
            );
        }
        for c in &*self.children.borrow() {
            c.print(indent+2);
        }
    }
}

pub fn profiler() -> &'static Profiler {
    HPROF.with(|p| unsafe { std::mem::transmute(p) } )
}

pub fn enter(name: &'static str) -> ProfileGuard<'static> {
    HPROF.with(|p| unsafe { std::mem::transmute::<_, &'static Profiler>(p) }.enter(name) )
}

pub fn start_frame() {
    HPROF.with(|p| p.start_frame())
}

pub fn end_frame() {
    HPROF.with(|p| p.end_frame())
}

// used to do a pretty printing of time
struct Nanoseconds(u64);

impl std::fmt::Display for Nanoseconds {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        if self.0 < 1_000 {
            write!(f, "{}ns", self.0)
        } else if self.0 < 1_000_000 {
            write!(f, "{:.1}us", self.0 as f64 / 1_000.)
        } else if self.0 < 1_000_000_000 {
            write!(f, "{:.1}ms", self.0 as f64 / 1_000_000.)
        } else {
            write!(f, "{:.1}s", self.0 as f64 / 1_000_000_000.)
        }
    }
}