1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
//! Image representations for ffi.
//!
//! # Usage
//!
//! Imagine you want to offer a very simple ffi interface: The caller provides an image buffer and
//! your program creates a thumbnail from it and dumps that image as `png`. This module is designed
//! to help you transition from raw memory data to Rust representation.
//! 
//! ```no_run
//! use std::ptr;
//! use std::slice;
//! use image::Rgb;
//! use image::flat::{FlatSamples, SampleLayout};
//! use image::imageops::thumbnail;
//!
//! #[no_mangle]
//! pub extern "C" fn store_rgb8_compressed(
//!     data: *const u8, len: usize,
//!     layout: *const SampleLayout
//! )
//!     -> bool
//! {
//!     let samples = unsafe { slice::from_raw_parts(data, len) };
//!     let layout = unsafe { ptr::read(layout) };
//!
//!     let buffer = FlatSamples {
//!         samples,
//!         layout,
//!         color_hint: None,
//!     };
//!
//!     let view = match buffer.as_view::<Rgb<u8>>() {
//!         Err(_) => return false, // Invalid layout.
//!         Ok(view) => view,
//!     };
//!
//!     thumbnail(&view, 64, 64)
//!         .save("output.png")
//!         .map(|_| true)
//!         .unwrap_or_else(|_| false)
//! }
//! ```
//! 
use std::cmp;
use std::ops::{Deref, Index, IndexMut};
use std::marker::PhantomData;

use num_traits::Zero;

use buffer::{ImageBuffer, Pixel};
use color::ColorType;
use image::{GenericImage, GenericImageView, ImageError};

/// A flat buffer over a (multi channel) image.
///
/// In contrast to `ImageBuffer`, this representation of a sample collection is much more lenient
/// in the layout thereof. In particular, it also allows grouping by color planes instead of by
/// pixel, at least for the purpose of a `GenericImageView`.
///
/// Note that the strides need not conform to the assumption that constructed indices actually
/// refer inside the underlying buffer but return values of library functions will always guarantee
/// this. To manually make this check use `check_index_validities` and maybe put that inside an
/// assert.
#[derive(Clone, Debug)]
pub struct FlatSamples<Buffer> {
    /// Underlying linear container holding sample values.
    pub samples: Buffer,

    /// A `repr(C)` description of the layout of buffer samples.
    pub layout: SampleLayout,

    /// Supplementary color information.
    ///
    /// You may keep this as `None` in most cases. This is NOT checked in `View` or other
    /// converters. It is intended mainly as a way for types that convert to this buffer type to
    /// attach their otherwise static color information. A dynamic image representation could
    /// however use this to resolve representational ambiguities such as the order of RGB channels.
    pub color_hint: Option<ColorType>,
}

/// A ffi compatible description of a sample buffer.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct SampleLayout {
    /// The number of channels in the color representation of the image.
    pub channels: u8,

    /// Add this to an index to get to the sample in the next channel.
    pub channel_stride: usize,

    /// The width of the represented image.
    pub width: u32,

    /// Add this to an index to get to the next sample in x-direction.
    pub width_stride: usize,

    /// The height of the represented image.
    pub height: u32,

    /// Add this to an index to get to the next sample in y-direction.
    pub height_stride: usize,
}

/// Helper struct for an unnamed (stride, length) pair.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
struct Dim(usize, usize);

impl SampleLayout {
    /// Describe a row-major image packed in all directions.
    ///
    /// The resulting will surely be `NormalForm::RowMajorPacked`. It can therefore be converted to
    /// safely to an `ImageBuffer` with a large enough underlying buffer.
    ///
    /// ```
    /// # use image::flat::{NormalForm, SampleLayout};
    /// let layout = SampleLayout::row_major_packed(3, 640, 480);
    /// assert!(layout.is_normal(NormalForm::RowMajorPacked));
    /// ```
    ///
    /// # Panics
    ///
    /// On platforms where `usize` has the same size as `u32` this panics when the resulting stride
    /// in the `height` direction would be larger than `usize::max_value()`. On other platforms
    /// where it can surely accomodate `u8::max_value() * u32::max_value(), this can never happen.
    pub fn row_major_packed(channels: u8, width: u32, height: u32) -> Self {
        let height_stride = (channels as usize).checked_mul(width as usize)
            .expect("Row major packed image can not be described because it does not fit into memory");
        SampleLayout {
            channels,
            channel_stride: 1,
            width,
            width_stride: channels as usize,
            height,
            height_stride,
        }
    }

    /// Describe a column-major image packed in all directions.
    ///
    /// The resulting will surely be `NormalForm::ColumnMajorPacked`. This is not particularly
    /// useful for conversion but can be used to describe such a buffer without pitfalls.
    ///
    /// ```
    /// # use image::flat::{NormalForm, SampleLayout};
    /// let layout = SampleLayout::column_major_packed(3, 640, 480);
    /// assert!(layout.is_normal(NormalForm::ColumnMajorPacked));
    /// ```
    ///
    /// # Panics
    ///
    /// On platforms where `usize` has the same size as `u32` this panics when the resulting stride
    /// in the `width` direction would be larger than `usize::max_value()`. On other platforms
    /// where it can surely accomodate `u8::max_value() * u32::max_value(), this can never happen.
    pub fn column_major_packed(channels: u8, width: u32, height: u32) -> Self {
        let width_stride = (channels as usize).checked_mul(height as usize)
            .expect("Column major packed image can not be described because it does not fit into memory");
        SampleLayout {
            channels,
            channel_stride: 1,
            height,
            height_stride: channels as usize,
            width,
            width_stride,
        }
    }

    /// Get the strides for indexing matrix-like `[(c, w, h)]`.
    ///
    /// For a row-major layout with grouped samples, this tuple is strictly
    /// increasing.
    pub fn strides_cwh(&self) -> (usize, usize, usize) {
        (self.channel_stride, self.width_stride, self.height_stride)
    }

    /// Get the dimensions `(channels, width, height)`.
    ///
    /// The interface is optimized for use with `strides_cwh` instead. The channel extent will be
    /// before width and height.
    pub fn extents(&self) -> (usize, usize, usize) {
        (self.channels as usize, self.width as usize, self.height as usize)
    }

    /// Tuple of bounds in the order of coordinate inputs.
    ///
    /// This function should be used whenever working with image coordinates opposed to buffer
    /// coordinates. The only difference compared to `extents` is the output type.
    pub fn bounds(&self) -> (u8, u32, u32) {
        (self.channels, self.width, self.height)
    }

    /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
    /// 
    /// This method will allow zero strides, allowing compact representations of monochrome images.
    /// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no
    /// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the
    /// other cases, the reasoning is slightly more involved.
    ///
    /// # Explanation
    ///
    /// Note that there is a difference between `min_length` and the index of the sample
    /// 'one-past-the-end`. This is due to strides that may be larger than the dimension below.
    ///
    /// ## Example with holes
    ///
    /// Let's look at an example of a grayscale image with 
    /// * `width_stride = 1`
    /// * `width = 2`
    /// * `height_stride = 3`
    /// * `height = 2`
    ///
    /// ```text
    /// | x x   | x x m | $
    ///  min_length m ^
    ///                   ^ one-past-the-end $
    /// ```
    ///
    /// The difference is also extreme for empty images with large strides. The one-past-the-end
    /// sample index is still as large as the largest of these strides while `min_length = 0`.
    ///
    /// ## Example with aliasing
    ///
    /// The concept gets even more important when you allow samples to alias each other. Here we
    /// have the buffer of a small grayscale image where this is the case, this time we will first
    /// show the buffer and then the individual rows below.
    ///
    /// * `width_stride = 1`
    /// * `width = 3`
    /// * `height_stride = 2`
    /// * `height = 2`
    ///
    /// ```text
    ///  1 2 3 4 5 m
    /// |1 2 3| row one
    ///     |3 4 5| row two
    ///            ^ m min_length
    ///          ^ ??? one-past-the-end
    /// ```
    ///
    /// This time 'one-past-the-end' is not even simply the largest stride times the extent of its
    /// dimension. That still points inside the image because `height*height_stride = 4` but also
    /// `index_of(1, 2) = 4`.
    pub fn min_length(&self) -> Option<usize> {
        if self.width == 0 || self.height == 0 || self.channels == 0 {
            return Some(0)
        }

        self.index(self.channels - 1, self.width - 1, self.height - 1)
            .and_then(|idx| idx.checked_add(1))
    }

    /// Check if a buffer of length `len` is large enough.
    pub fn fits(&self, len: usize) -> bool {
        self.min_length().map(|min| len >= min).unwrap_or(false)
    }

    /// The extents of this array, in order of increasing strides.
    fn increasing_stride_dims(&self) -> [Dim; 3] {
        // Order extents by strides, then check that each is less equal than the next stride.
        let mut grouped: [Dim; 3] = [
            Dim(self.channel_stride, self.channels as usize),
            Dim(self.width_stride, self.width as usize),
            Dim(self.height_stride, self.height as usize)];

        grouped.sort();

        let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
        assert!(min_dim.stride() <= mid_dim.stride() && mid_dim.stride() <= max_dim.stride());
        
        grouped
    }

    /// If there are any samples aliasing each other.
    ///
    /// If this is not the case, it would always be safe to allow mutable access to two different
    /// samples at the same time. Otherwise, this operation would need additional checks. When one
    /// dimension overflows `usize` with its stride we also consider this aliasing.
    pub fn has_aliased_samples(&self) -> bool {
        let grouped = self.increasing_stride_dims();
        let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);

        let min_size = match min_dim.checked_len() {
            None => return true,
            Some(size) => size,
        };

        let mid_size = match mid_dim.checked_len() {
            None => return true,
            Some(size) => size,
        };

        let _max_size = match max_dim.checked_len() {
            None => return true,
            Some(_) => (), // Only want to know this didn't overflow.
        };

        // Each higher dimension must walk over all of one lower dimension.
        min_size > mid_dim.stride() || mid_size > max_dim.stride()
    }

    /// Check if a buffer fulfills the requirements of a normal form.
    ///
    /// Certain conversions have preconditions on the structure of the sample buffer that are not
    /// captured (by design) by the type system. These are then checked before the conversion. Such
    /// checks can all be done in constant time and will not inspect the buffer content. You can
    /// perform these checks yourself when the conversion is not required at this moment but maybe
    /// still performed later.
    pub fn is_normal(&self, form: NormalForm) -> bool {
        if self.has_aliased_samples() {
            return false;
        }

        if form >= NormalForm::PixelPacked && self.channel_stride != 1 {
            return false;
        }

        if form >= NormalForm::ImagePacked {
            // has aliased already checked for overflows.
            let grouped = self.increasing_stride_dims();
            let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);

            if 1 != min_dim.stride() {
                return false;
            }

            if min_dim.len() != mid_dim.stride() {
                return false;
            }

            if  mid_dim.len() != max_dim.stride() {
                return false;
            }
        }

        if form >= NormalForm::RowMajorPacked {
            if self.width_stride != self.channels as usize {
                return false;
            }

            if self.width as usize*self.width_stride != self.height_stride {
                return false;
            }
        }

        if form >= NormalForm::ColumnMajorPacked {
            if self.height_stride != self.channels as usize {
                return false;
            }
            
            if self.height as usize*self.height_stride != self.width_stride {
                return false;
            }
        }

        return true;
    }

    /// Check that the pixel and the channel index are in bounds.
    ///
    /// An in-bound coordinate does not yet guarantee that the corresponding calculation of a
    /// buffer index does not overflow. However, if such a buffer large enough to hold all samples
    /// actually exists in memory, this porperty of course follows.
    pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool {
        return channel < self.channels && x < self.width && y < self.height
    }

    /// Resolve the index of a particular sample.
    ///
    /// `None` if the index is outside the bounds or does not fit into a `usize`.
    pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> {
        if !self.in_bounds(channel, x, y) {
            return None
        }

        self.index_ignoring_bounds(channel as usize, x as usize, y as usize)
    }

    /// Get the theoretical position of sample (channel, x, y).
    ///
    /// The 'check' is for overflow during index calculation, not that it is contained in the
    /// image. Two samples may return the same index, even when one of them is out of bounds. This
    /// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image.
    pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> {
        let idx_c = (channel as usize).checked_mul(self.channel_stride);
        let idx_x = (x as usize).checked_mul(self.width_stride);
        let idx_y = (y as usize).checked_mul(self.height_stride);

        let (idx_c, idx_x, idx_y) = match (idx_c, idx_x, idx_y) {
            (Some(idx_c), Some(idx_x), Some(idx_y)) => (idx_c, idx_x, idx_y),
            _ => return None,
        };

        Some(0usize)
            .and_then(|b| b.checked_add(idx_c))
            .and_then(|b| b.checked_add(idx_x))
            .and_then(|b| b.checked_add(idx_y))
    }

    /// Get an index provided it is inbouds.
    ///
    /// Assumes that the image is backed by some sufficiently large buffer. Then computation can
    /// not overflow as we could represent the maximum coordinate. Since overflow is defined either
    /// way, this method can not be unsafe.
    pub fn in_bounds_index(&self, c: u8, x: u32, y: u32) -> usize {
        let (c_stride, x_stride, y_stride) = self.strides_cwh();
        (y as usize * y_stride) + (x as usize * x_stride) + (c as usize * c_stride)
    }


    /// Shrink the image to the minimum of current and given extents.
    ///
    /// This does not modify the strides, so that the resulting sample buffer may have holes
    /// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when
    /// samples had aliased each other before.
    pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) {
        self.channels = self.channels.min(channels);
        self.width = self.width.min(width);
        self.height = self.height.min(height);
    }
}

impl Dim {
    fn stride(self) -> usize {
        self.0
    }

    /// Length of this dimension in memory.
    fn checked_len(self) -> Option<usize> {
        self.0.checked_mul(self.1)
    }

    fn len(self) -> usize {
        self.0*self.1
    }
}

impl<Buffer> FlatSamples<Buffer> {
    /// Get the strides for indexing matrix-like `[(c, w, h)]`.
    ///
    /// For a row-major layout with grouped samples, this tuple is strictly
    /// increasing.
    pub fn strides_cwh(&self) -> (usize, usize, usize) {
        self.layout.strides_cwh()
    }

    /// Get the dimensions `(channels, width, height)`.
    ///
    /// The interface is optimized for use with `strides_cwh` instead. The channel extent will be
    /// before width and height.
    pub fn extents(&self) -> (usize, usize, usize) {
        self.layout.extents()
    }

    /// Tuple of bounds in the order of coordinate inputs.
    ///
    /// This function should be used whenever working with image coordinates opposed to buffer
    /// coordinates. The only difference compared to `extents` is the output type.
    pub fn bounds(&self) -> (u8, u32, u32) {
        self.layout.bounds()
    }

    /// Get a reference based version.
    pub fn as_ref<T>(&self) -> FlatSamples<&[T]> where Buffer: AsRef<[T]> {
        FlatSamples {
            samples: self.samples.as_ref(),
            layout: self.layout,
            color_hint: self.color_hint,
        }
    }

    /// Get a mutable reference based version.
    pub fn as_mut<T>(&mut self) -> FlatSamples<&mut [T]> where Buffer: AsMut<[T]> {
        FlatSamples {
            samples: self.samples.as_mut(),
            layout: self.layout,
            color_hint: self.color_hint,
        }
    }

    /// Copy the data into an owned vector.
    pub fn to_vec<T>(&self) -> FlatSamples<Vec<T>> 
        where T: Clone, Buffer: AsRef<[T]> 
    {
        FlatSamples {
            samples: self.samples.as_ref().to_vec(),
            layout: self.layout,
            color_hint: self.color_hint,
        }
    }

    /// Get a reference to a single sample.
    ///
    /// This more restrictive than the method based on `std::ops::Index` but guarantees to properly
    /// check all bounds and not panic as long as `Buffer::as_ref` does not do so.
    ///
    /// ```
    /// # use image::{RgbImage};
    /// let flat = RgbImage::new(480, 640).into_flat_samples(); 
    ///
    /// // Get the blue channel at (10, 10).
    /// assert!(flat.get_sample(1, 10, 10).is_some());
    ///
    /// // There is no alpha channel.
    /// assert!(flat.get_sample(3, 10, 10).is_none());
    /// ```
    ///
    /// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating
    /// bounds checks with `min_length` in a type similar to `View`. Then you may use
    /// `in_bounds_index` as a small speedup over the index calculation of this method which relies
    /// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample
    /// coordinate is in fact backed by any memory buffer.
    pub fn get_sample<T>(&self, channel: u8, x: u32, y: u32) -> Option<&T>
        where Buffer: AsRef<[T]>, 
    {
        self.index(channel, x, y).and_then(|idx| self.samples.as_ref().get(idx))
    }


    /// Get a mutable reference to a single sample.
    ///
    /// This more restrictive than the method based on `std::ops::IndexMut` but guarantees to
    /// properly check all bounds and not panic as long as `Buffer::as_ref` does not do so.
    /// Contrary to conversion to `ViewMut`, this does not require that samples are packed since it
    /// does not need to convert samples to a color representation.
    ///
    /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
    /// here can in fact modify more than the coordinate in the argument.
    ///
    /// ```
    /// # use image::{RgbImage};
    /// let mut flat = RgbImage::new(480, 640).into_flat_samples(); 
    ///
    /// // Assign some new color to the blue channel at (10, 10).
    /// *flat.get_mut_sample(1, 10, 10).unwrap() = 255;
    ///
    /// // There is no alpha channel.
    /// assert!(flat.get_mut_sample(3, 10, 10).is_none());
    /// ```
    ///
    /// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating
    /// bounds checks with `min_length` in a type similar to `View`. Then you may use
    /// `in_bounds_index` as a small speedup over the index calculation of this method which relies
    /// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample
    /// coordinate is in fact backed by any memory buffer.
    pub fn get_mut_sample<T>(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut T>
        where Buffer: AsMut<[T]>,
    {
        match self.index(channel, x, y) {
            None => return None,
            Some(idx) => self.samples.as_mut().get_mut(idx),
        }
    }

    /// View this buffer as an image over some type of pixel.
    ///
    /// This first ensures that all in-bounds coordinates refer to valid indices in the sample
    /// buffer. It also checks that the specified pixel format expects the same number of channels
    /// that are present in this buffer. Neither are larger nor a smaller number will be accepted.
    /// There is no automatic conversion.
    pub fn as_view<P>(&self) -> Result<View<&[P::Subpixel], P>, Error> 
        where P: Pixel, Buffer: AsRef<[P::Subpixel]>,
    {
        if self.layout.channels != P::channel_count() {
            return Err(Error::WrongColor(P::color_type()))
        }

        let as_ref = self.samples.as_ref();
        if !self.layout.fits(as_ref.len()) {
            return Err(Error::TooLarge)
        }

        Ok(View {
            inner: FlatSamples {
                samples: as_ref,
                layout: self.layout,
                color_hint: self.color_hint,
            },
            phantom: PhantomData,
        })
    }

    /// View this buffer but keep mutability at a sample level.
    ///
    /// This is similar to `as_view` but subtly different from `as_view_mut`. The resulting type
    /// can be used as a `GenericImage` with the same prior invariants needed as for `as_view`.
    /// It can not be used as a mutable `GenericImage` but does not need channels to be packed in
    /// their pixel representation.
    ///
    /// This first ensures that all in-bounds coordinates refer to valid indices in the sample
    /// buffer. It also checks that the specified pixel format expects the same number of channels
    /// that are present in this buffer. Neither are larger nor a smaller number will be accepted.
    /// There is no automatic conversion.
    ///
    /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
    /// for one sample can in fact modify other samples as well. Sometimes exactly this is
    /// intended.
    pub fn as_view_with_mut_samples<P>(&mut self) -> Result<View<&mut [P::Subpixel], P>, Error>
        where P: Pixel, Buffer: AsMut<[P::Subpixel]>,
    {
        if self.layout.channels != P::channel_count() {
            return Err(Error::WrongColor(P::color_type()))
        }

        let as_mut = self.samples.as_mut();
        if !self.layout.fits(as_mut.len()) {
            return Err(Error::TooLarge)
        }

        Ok(View {
            inner: FlatSamples {
                samples: as_mut,
                layout: self.layout,
                color_hint: self.color_hint,
            },
            phantom: PhantomData,
        })
    }

    /// Interpret this buffer as a mutable image.
    ///
    /// To succeed, the pixels in this buffer may not alias each other and the samples of each
    /// pixel must be packed (i.e. `channel_stride` is `1`). The number of channels must be
    /// consistent with the channel count expected by the pixel format.
    ///
    /// This is similar to an `ImageBuffer` except it is a temporary view that is not normalized as
    /// strongly. To get an owning version, consider copying the data into an `ImageBuffer`. This
    /// provides many more operations, is possibly faster (if not you may want to open an issue) is
    /// generally polished. You can also try to convert this buffer inline, see
    /// `ImageBuffer::from_raw`.
    pub fn as_view_mut<P>(&mut self) -> Result<ViewMut<&mut [P::Subpixel], P>, Error>
        where P: Pixel, Buffer: AsMut<[P::Subpixel]>,
    {
        if !self.layout.is_normal(NormalForm::PixelPacked) {
            return Err(Error::NormalFormRequired(NormalForm::PixelPacked))
        }

        if self.layout.channels != P::channel_count() {
            return Err(Error::WrongColor(P::color_type()))
        }

        let as_mut = self.samples.as_mut();
        if !self.layout.fits(as_mut.len()) {
            return Err(Error::TooLarge)
        }

        Ok(ViewMut {
            inner: FlatSamples {
                samples: as_mut,
                layout: self.layout,
                color_hint: self.color_hint,
            },
            phantom: PhantomData,
        })
    }

    /// View the samples as a slice.
    ///
    /// The slice is not limited to the region of the image and not all sample indices are valid
    /// indices into this buffer. See `image_mut_slice` as an alternative.
    pub fn as_slice<T>(&self) -> &[T] where Buffer: AsRef<[T]> {
        self.samples.as_ref()
    }

    /// View the samples as a slice.
    ///
    /// The slice is not limited to the region of the image and not all sample indices are valid
    /// indices into this buffer. See `image_mut_slice` as an alternative.
    pub fn as_mut_slice<T>(&mut self) -> &mut [T] where Buffer: AsMut<[T]> {
        self.samples.as_mut()
    }

    /// Return the portion of the buffer that holds sample values.
    ///
    /// This may fail when the coordinates in this image are either out-of-bounds of the underlying
    /// buffer or can not be represented. Note that the slice may have holes that do not correspond
    /// to any sample in the image represented by it.
    pub fn image_slice<T>(&self) -> Option<&[T]> where Buffer: AsRef<[T]> {
        let min_length = match self.min_length() {
            None => return None,
            Some(index) => index,
        };

        let slice = self.samples.as_ref();
        if slice.len() < min_length {
            return None
        }

        Some(&slice[..min_length])
    }

    /// Mutable portion of the buffer that holds sample values.
    pub fn image_mut_slice<T>(&mut self) -> Option<&mut [T]> where Buffer: AsMut<[T]> {
        let min_length = match self.min_length() {
            None => return None,
            Some(index) => index,
        };

        let slice = self.samples.as_mut();
        if slice.len() < min_length {
            return None
        }

        Some(&mut slice[..min_length])
    }

    /// Move the data into an image buffer.
    ///
    /// This does **not** convert the sample layout. The buffer needs to be in packed row-major form
    /// before calling this function. In case of an error, returns the buffer again so that it does
    /// not release any allocation.
    pub fn try_into_buffer<P>(self) -> Result<ImageBuffer<P, Buffer>, (Error, Self)> 
    where 
        P: Pixel + 'static,
        P::Subpixel: 'static,
        Buffer: Deref<Target=[P::Subpixel]>,
    {
        if !self.is_normal(NormalForm::RowMajorPacked) {
            return Err((Error::NormalFormRequired(NormalForm::RowMajorPacked), self))
        }

        if self.layout.channels != P::channel_count() {
            return Err((Error::WrongColor(P::color_type()), self))
        }

        if !self.fits(self.samples.deref().len()) {
            return Err((Error::TooLarge, self))
        }


        Ok(ImageBuffer::from_raw(self.layout.width, self.layout.height, self.samples).unwrap_or_else(
            || panic!("Preconditions should have been ensured before conversion")))
    }

    /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
    /// 
    /// This method will allow zero strides, allowing compact representations of monochrome images.
    /// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no
    /// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the
    /// other cases, the reasoning is slightly more involved.
    ///
    /// # Explanation
    ///
    /// Note that there is a difference between `min_length` and the index of the sample
    /// 'one-past-the-end`. This is due to strides that may be larger than the dimension below.
    ///
    /// ## Example with holes
    ///
    /// Let's look at an example of a grayscale image with 
    /// * `width_stride = 1`
    /// * `width = 2`
    /// * `height_stride = 3`
    /// * `height = 2`
    ///
    /// ```text
    /// | x x   | x x m | $
    ///  min_length m ^
    ///                   ^ one-past-the-end $
    /// ```
    ///
    /// The difference is also extreme for empty images with large strides. The one-past-the-end
    /// sample index is still as large as the largest of these strides while `min_length = 0`.
    ///
    /// ## Example with aliasing
    ///
    /// The concept gets even more important when you allow samples to alias each other. Here we
    /// have the buffer of a small grayscale image where this is the case, this time we will first
    /// show the buffer and then the individual rows below.
    ///
    /// * `width_stride = 1`
    /// * `width = 3`
    /// * `height_stride = 2`
    /// * `height = 2`
    ///
    /// ```text
    ///  1 2 3 4 5 m
    /// |1 2 3| row one
    ///     |3 4 5| row two
    ///            ^ m min_length
    ///          ^ ??? one-past-the-end
    /// ```
    ///
    /// This time 'one-past-the-end' is not even simply the largest stride times the extent of its
    /// dimension. That still points inside the image because `height*height_stride = 4` but also
    /// `index_of(1, 2) = 4`.
    pub fn min_length(&self) -> Option<usize> {
        self.layout.min_length()
    }

    /// Check if a buffer of length `len` is large enough.
    pub fn fits(&self, len: usize) -> bool {
        self.layout.fits(len)
    }

    /// If there are any samples aliasing each other.
    ///
    /// If this is not the case, it would always be safe to allow mutable access to two different
    /// samples at the same time. Otherwise, this operation would need additional checks. When one
    /// dimension overflows `usize` with its stride we also consider this aliasing.
    pub fn has_aliased_samples(&self) -> bool {
        self.layout.has_aliased_samples()
    }

    /// Check if a buffer fulfills the requirements of a normal form.
    ///
    /// Certain conversions have preconditions on the structure of the sample buffer that are not
    /// captured (by design) by the type system. These are then checked before the conversion. Such
    /// checks can all be done in constant time and will not inspect the buffer content. You can
    /// perform these checks yourself when the conversion is not required at this moment but maybe
    /// still performed later.
    pub fn is_normal(&self, form: NormalForm) -> bool {
        self.layout.is_normal(form)
    }

    /// Check that the pixel and the channel index are in bounds.
    ///
    /// An in-bound coordinate does not yet guarantee that the corresponding calculation of a
    /// buffer index does not overflow. However, if such a buffer large enough to hold all samples
    /// actually exists in memory, this porperty of course follows.
    pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool {
        self.layout.in_bounds(channel, x, y)
    }

    /// Resolve the index of a particular sample.
    ///
    /// `None` if the index is outside the bounds or does not fit into a `usize`.
    pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> {
        self.layout.index(channel, x, y)
    }

    /// Get the theoretical position of sample (x, y, channel).
    ///
    /// The 'check' is for overflow during index calculation, not that it is contained in the
    /// image. Two samples may return the same index, even when one of them is out of bounds. This
    /// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image.
    pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> {
        self.layout.index_ignoring_bounds(channel, x, y)
    }

    /// Get an index provided it is inbouds.
    ///
    /// Assumes that the image is backed by some sufficiently large buffer. Then computation can
    /// not overflow as we could represent the maximum coordinate. Since overflow is defined either
    /// way, this method can not be unsafe.
    pub fn in_bounds_index(&self, channel: u8, x: u32, y: u32) -> usize {
        self.layout.in_bounds_index(channel, x, y)
    }

    /// Shrink the image to the minimum of current and given extents.
    ///
    /// This does not modify the strides, so that the resulting sample buffer may have holes
    /// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when
    /// samples had aliased each other before.
    pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) {
        self.layout.shrink_to(channels, width, height)
    }
}

/// A flat buffer that can be used as an image view.
///
/// This is a nearly trivial wrapper around a buffer but at least sanitizes by checking the buffer
/// length first and constraining the pixel type.
///
/// Note that this does not eliminate panics as the `AsRef<[T]>` implementation of `Buffer` may be
/// unreliable, i.e. return different buffers at different times. This of course is a non-issue for
/// all common collections where the bounds check once must be enough.
///
/// # Inner invariants
///
/// * For all indices inside bounds, the corresponding index is valid in the buffer
/// * `P::channel_count()` agrees with `self.inner.layout.channels`
///
#[derive(Clone, Debug)]
pub struct View<Buffer, P: Pixel> 
where 
    Buffer: AsRef<[P::Subpixel]> 
{
    inner: FlatSamples<Buffer>,
    phantom: PhantomData<P>,
}

/// A mutable owning version of a flat buffer.
///
/// While this wraps a buffer similar to `ImageBuffer`, this is mostly intended as a utility. The
/// library endorsed normalized representation is still `ImageBuffer`. Also, the implementation of
/// `AsMut<[P::Subpixel]>` must always yield the same buffer. Therefore there is no public way to
/// construct this with an owning buffer.
///
/// # Inner invariants
///
/// * For all indices inside bounds, the corresponding index is valid in the buffer
/// * There is no aliasing of samples
/// * The samples are packed, i.e. `self.inner.layout.sample_stride == 1`
/// * `P::channel_count()` agrees with `self.inner.layout.channels`
///
#[derive(Clone, Debug)]
pub struct ViewMut<Buffer, P: Pixel> 
where 
    Buffer: AsMut<[P::Subpixel]> 
{
    inner: FlatSamples<Buffer>,
    phantom: PhantomData<P>,
}

/// Denotes invalid flat sample buffers when trying to convert to stricter types.
///
/// The biggest use case being `ImageBuffer` which expects closely packed
/// samples in a row major matrix representation. But this error type may be
/// resused for other import functions. A more versatile user may also try to
/// correct the underlying representation depending on the error variant.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Error {
    /// The represented image was too large.
    ///
    /// The optional value denotes a possibly accepted maximal bound.
    TooLarge,

    /// The represented image can not use this representation.
    ///
    /// Has an additional value of the normalized form that would be accepted.
    NormalFormRequired(NormalForm),

    /// The color format did not match the channel count.
    ///
    /// In some cases you might be able to fix this by lowering the reported pixel count of the
    /// buffer without touching the strides.
    ///
    /// In very special circumstances you *may* do the opposite. This is **VERY** dangerous but not
    /// directly memory unsafe although that will likely alias pixels. One scenario is when you
    /// want to construct an `Rgba` image but have only 3 bytes per pixel and for some reason don't
    /// care about the value of the alpha channel even though you need `Rgba`.
    WrongColor(ColorType),
}

/// Different normal forms of buffers.
///
/// A normal form is an unaliased buffer with some additional constraints.  The `ÌmageBuffer` uses
/// row major form with packed samples. 
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum NormalForm {
    /// No pixel aliases another.
    ///
    /// Unaliased also guarantees that all index calculations in the image bounds using
    /// `dim_index*dim_stride` (such as `x*width_stride + y*height_stride`) do not overflow.
    Unaliased,

    /// At least pixels are packed.
    ///
    /// Images of these types can wrap `[T]`-slices into the standard color types. This is a
    /// precondition for `GenericImage` which requires by-reference access to pixels.
    PixelPacked,

    /// All samples are packed.
    ///
    /// This is orthogonal to `PixelPacked`. It requires that there are no holes in the image but
    /// it is not necessary that the pixel samples themselves are adjacent. An example of this
    /// behaviour is a planar image layout.
    ImagePacked,

    /// The samples are in row-major form and all samples are packed.
    ///
    /// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is
    /// in row-major form. 
    RowMajorPacked,

    /// The samples are in column-major form and all samples are packed.
    ///
    /// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is
    /// in column-major form. 
    ColumnMajorPacked,
}

impl<Buffer, P: Pixel> View<Buffer, P>
where 
    Buffer: AsRef<[P::Subpixel]> 
{
    /// Take out the sample buffer.
    ///
    /// Gives up the normalization invariants on the buffer format.
    pub fn into_inner(self) -> FlatSamples<Buffer> {
        self.inner
    }

    /// Get a reference on the inner sample descriptor.
    ///
    /// There is no mutable counterpart as modifying the buffer format, including strides and
    /// lengths, could invalidate the accessibility invariants of the `View`. It is not specified
    /// if the inner buffer is the same as the buffer of the image from which this view was
    /// created. It might have been truncated as an optimization.
    pub fn flat(&self) -> &FlatSamples<Buffer> {
        &self.inner
    }

    /// Get a reference on the inner buffer.
    ///
    /// There is no mutable counter part since it is not intended to allow you to reassign the
    /// buffer or otherwise change its size or properties.
    pub fn samples(&self) -> &Buffer {
        &self.inner.samples
    }

    /// Get a reference to a selected subpixel if it is in-bounds.
    ///
    /// This method will return `None` when the sample is out-of-bounds. All errors that could
    /// occur due to overflow have been eliminated while construction the `View`.
    pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel> {
        if !self.inner.in_bounds(channel, x, y) {
            return None
        }

        let index = self.inner.in_bounds_index(channel, x, y);
        // Should always be `Some(_)` but checking is more costly.
        self.samples().as_ref().get(index)
    }

    /// Get a mutable reference to a selected subpixel if it is in-bounds.
    ///
    /// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`.  This
    /// method will return `None` when the sample is out-of-bounds. All errors that could occur due
    /// to overflow have been eliminated while construction the `View`.
    ///
    /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
    /// here can in fact modify more than the coordinate in the argument.
    pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel> 
        where Buffer: AsMut<[P::Subpixel]>
    {
        if !self.inner.in_bounds(channel, x, y) {
            return None
        }

        let index = self.inner.in_bounds_index(channel, x, y);
        // Should always be `Some(_)` but checking is more costly.
        self.inner.samples.as_mut().get_mut(index)
    }

    /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
    ///
    /// See `FlatSamples::min_length`. This method will always succeed.
    pub fn min_length(&self) -> usize {
        self.inner.min_length().unwrap()
    }

    /// Return the portion of the buffer that holds sample values.
    ///
    /// While this can not fail–the validity of all coordinates has been validated during the
    /// conversion from `FlatSamples`–the resulting slice may still contain holes.
    pub fn image_slice(&self) -> &[P::Subpixel] {
        &self.samples().as_ref()[..self.min_length()]
    }

    /// Return the mutable portion of the buffer that holds sample values.
    ///
    /// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`. While
    /// this can not fail–the validity of all coordinates has been validated during the conversion
    /// from `FlatSamples`–the resulting slice may still contain holes.
    pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel] 
        where Buffer: AsMut<[P::Subpixel]>
    {
        let min_length = self.min_length();
        &mut self.inner.samples.as_mut()[..min_length]
    }

    /// Shrink the inner image.
    ///
    /// The new dimensions will be the minimum of the previous dimensions. Since the set of
    /// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`.
    /// Note that you can not change the number of channels as an intrinsic property of `P`.
    pub fn shrink_to(&mut self, width: u32, height: u32) {
        let channels = self.inner.layout.channels;
        self.inner.shrink_to(channels, width, height)
    }

    /// Try to convert this into an image with mutable pixels.
    ///
    /// The resulting image implements `GenericImage` in addition to `GenericImageView`. While this
    /// has mutable samples, it does not enforce that pixel can not alias and that samples are
    /// packed enough for a mutable pixel reference. This is slightly cheaper than the chain
    /// `self.into_inner().as_view_mut()` and keeps the `View` alive on failure.
    ///
    /// ```
    /// # use image::{Rgb, RgbImage};
    /// let mut buffer = RgbImage::new(480, 640).into_flat_samples();
    /// let view = buffer.as_view_with_mut_samples::<Rgb<u8>>().unwrap();
    ///
    /// // Inspect some pixels, …
    ///
    /// // Doesn't fail because it was originally an `RgbImage`.
    /// let view_mut = view.try_upgrade().unwrap();
    /// ```
    pub fn try_upgrade(self) -> Result<ViewMut<Buffer, P>, (Error, Self)> 
        where Buffer: AsMut<[P::Subpixel]>
    {
        if !self.inner.is_normal(NormalForm::PixelPacked) {
            return Err((Error::NormalFormRequired(NormalForm::PixelPacked), self))
        }

        // No length check or channel count check required, all the same.
        Ok(ViewMut {
            inner: self.inner,
            phantom: PhantomData,
        })
    }
}

impl<Buffer, P: Pixel> ViewMut<Buffer, P>
where 
    Buffer: AsMut<[P::Subpixel]>
{
    /// Take out the sample buffer.
    ///
    /// Gives up the normalization invariants on the buffer format.
    pub fn into_inner(self) -> FlatSamples<Buffer> {
        self.inner
    }

    /// Get a reference on the sample buffer descriptor.
    ///
    /// There is no mutable counterpart as modifying the buffer format, including strides and
    /// lengths, could invalidate the accessibility invariants of the `View`. It is not specified
    /// if the inner buffer is the same as the buffer of the image from which this view was
    /// created. It might have been truncated as an optimization.
    pub fn flat(&self) -> &FlatSamples<Buffer> {
        &self.inner
    }

    /// Get a reference on the inner buffer.
    ///
    /// There is no mutable counter part since it is not intended to allow you to reassign the
    /// buffer or otherwise change its size or properties. However, its contents can be accessed
    /// mutable through a slice with `image_mut_slice`.
    pub fn samples(&self) -> &Buffer {
        &self.inner.samples
    }

    /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
    ///
    /// See `FlatSamples::min_length`. This method will always succeed.
    pub fn min_length(&self) -> usize {
        self.inner.min_length().unwrap()
    }

    /// Get a reference to a selected subpixel.
    ///
    /// This method will return `None` when the sample is out-of-bounds. All errors that could
    /// occur due to overflow have been eliminated while construction the `View`.
    pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel>
        where Buffer: AsRef<[P::Subpixel]>
    {
        if !self.inner.in_bounds(channel, x, y) {
            return None
        }

        let index = self.inner.in_bounds_index(channel, x, y);
        // Should always be `Some(_)` but checking is more costly.
        self.samples().as_ref().get(index)
    }

    /// Get a mutable reference to a selected sample.
    ///
    /// This method will return `None` when the sample is out-of-bounds. All errors that could
    /// occur due to overflow have been eliminated while construction the `View`.
    pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel> {
        if !self.inner.in_bounds(channel, x, y) {
            return None
        }

        let index = self.inner.in_bounds_index(channel, x, y);
        // Should always be `Some(_)` but checking is more costly.
        self.inner.samples.as_mut().get_mut(index)
    }

    /// Return the portion of the buffer that holds sample values.
    ///
    /// While this can not fail–the validity of all coordinates has been validated during the
    /// conversion from `FlatSamples`–the resulting slice may still contain holes.
    pub fn image_slice(&self) -> &[P::Subpixel] where Buffer: AsRef<[P::Subpixel]> {
        &self.inner.samples.as_ref()[..self.min_length()]
    }

    /// Return the mutable buffer that holds sample values.
    pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel] {
        let length = self.min_length();
        &mut self.inner.samples.as_mut()[..length]
    }

    /// Shrink the inner image.
    ///
    /// The new dimensions will be the minimum of the previous dimensions. Since the set of
    /// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`.
    /// Note that you can not change the number of channels as an intrinsic property of `P`.
    pub fn shrink_to(&mut self, width: u32, height: u32) {
        let channels = self.inner.layout.channels;
        self.inner.shrink_to(channels, width, height)
    }
}


// The out-of-bounds panic for single sample access similar to `slice::index`.
#[inline(never)]
#[cold]
fn panic_cwh_out_of_bounds(
    (c, x, y): (u8, u32, u32),
    bounds: (u8, u32, u32),
    strides: (usize, usize, usize)) -> !
{
    panic!("Sample coordinates {:?} out of sample matrix bounds {:?} with strides {:?}", (c, x, y), bounds, strides)
}

// The out-of-bounds panic for pixel access similar to `slice::index`.
#[inline(never)]
#[cold]
fn panic_pixel_out_of_bounds(
    (x, y): (u32, u32),
    bounds: (u32, u32)) -> !
{
    panic!("Image index {:?} out of bounds {:?}", (x, y), bounds)
}

impl<Buffer> Index<(u8, u32, u32)> for FlatSamples<Buffer>
    where Buffer: Index<usize>
{
    type Output = Buffer::Output;

    /// Return a reference to a single sample at specified coordinates.
    ///
    /// # Panics
    ///
    /// When the coordinates are out of bounds or the index calculation fails.
    fn index(&self, (c, x, y): (u8, u32, u32)) -> &Self::Output {
        let bounds = self.bounds();
        let strides = self.strides_cwh();
        let index = self.index(c, x, y).unwrap_or_else(||
            panic_cwh_out_of_bounds((c, x, y), bounds, strides));
        &self.samples[index]
    }
}

impl<Buffer> IndexMut<(u8, u32, u32)> for FlatSamples<Buffer>
    where Buffer: IndexMut<usize>
{

    /// Return a mutable reference to a single sample at specified coordinates.
    ///
    /// # Panics
    ///
    /// When the coordinates are out of bounds or the index calculation fails.
    fn index_mut(&mut self, (c, x, y): (u8, u32, u32)) -> &mut Self::Output {
        let bounds = self.bounds();
        let strides = self.strides_cwh();
        let index = self.index(c, x, y).unwrap_or_else(||
            panic_cwh_out_of_bounds((c, x, y), bounds, strides));
        &mut self.samples[index]
    }
}

impl<Buffer, P: Pixel> GenericImageView for View<Buffer, P> 
    where Buffer: AsRef<[P::Subpixel]>
{
    type Pixel = P;

    // We don't proxy an inner image.
    type InnerImageView = Self;

    fn dimensions(&self) -> (u32, u32) {
        (self.inner.layout.width, self.inner.layout.height)
    }

    fn bounds(&self) -> (u32, u32, u32, u32) {
        let (w, h) = self.dimensions();
        (0, w, 0, h)
    }

    fn in_bounds(&self, x: u32, y: u32) -> bool {
        let (w, h) = self.dimensions();
        x < w && y < h
    }

    fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
        if !self.inner.in_bounds(0, x, y) {
            panic_pixel_out_of_bounds((x, y), self.dimensions())
        }

        let image = self.inner.samples.as_ref();
        let base_index = self.inner.in_bounds_index(0, x, y);
        let channels = P::channel_count() as usize;

        let mut buffer = [Zero::zero(); 256];
        buffer.iter_mut().enumerate().take(channels).for_each(|(c, to)| {
            let index = base_index + c*self.inner.layout.channel_stride;
            *to = image[index];
        });

        P::from_slice(&buffer[..channels]).clone()
    }

    fn inner(&self) -> &Self {
        self // There is no other inner image.
    }
}

impl<Buffer, P: Pixel> GenericImageView for ViewMut<Buffer, P> 
    where Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>,
{
    type Pixel = P;

    // We don't proxy an inner image.
    type InnerImageView = Self;

    fn dimensions(&self) -> (u32, u32) {
        (self.inner.layout.width, self.inner.layout.height)
    }

    fn bounds(&self) -> (u32, u32, u32, u32) {
        let (w, h) = self.dimensions();
        (0, w, 0, h)
    }

    fn in_bounds(&self, x: u32, y: u32) -> bool {
        let (w, h) = self.dimensions();
        x < w && y < h
    }

    fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
        if !self.inner.in_bounds(0, x, y) {
            panic_pixel_out_of_bounds((x, y), self.dimensions())
        }

        let image = self.inner.samples.as_ref();
        let base_index = self.inner.in_bounds_index(0, x, y);
        let channels = P::channel_count() as usize;

        let mut buffer = [Zero::zero(); 256];
        buffer.iter_mut().enumerate().take(channels).for_each(|(c, to)| {
            let index = base_index + c*self.inner.layout.channel_stride;
            *to = image[index];
        });

        P::from_slice(&buffer[..channels]).clone()
    }

    fn inner(&self) -> &Self {
        self // There is no other inner image.
    }
}

impl<Buffer, P: Pixel> GenericImage for ViewMut<Buffer, P> 
    where Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>,
{
    type InnerImage = Self;

    fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel {
        if !self.inner.in_bounds(0, x, y) {
            panic_pixel_out_of_bounds((x, y), self.dimensions())
        }

        let base_index = self.inner.in_bounds_index(0, x, y);
        let channel_count = <P as Pixel>::channel_count() as usize;
        let pixel_range = base_index..base_index + channel_count;
        P::from_slice_mut(&mut self.inner.samples.as_mut()[pixel_range])
    }

    fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
        *self.get_pixel_mut(x, y) = pixel;
    }

    fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
        self.get_pixel_mut(x, y).blend(&pixel);
    }

    fn inner_mut(&mut self) -> &mut Self {
        self
    }
}

impl From<Error> for ImageError {
    fn from(error: Error) -> ImageError {
        match error {
            Error::TooLarge => ImageError::DimensionError,
            Error::WrongColor(color) => ImageError::UnsupportedColor(color),
            Error::NormalFormRequired(form) => ImageError::FormatError(
                format!("Required sample buffer in normal form {:?}", form)),
        }
    }
}

impl PartialOrd for NormalForm {
    /// Compares the logical preconditions.
    ///
    /// `a < b` if the normal form `a` has less preconditions than `b`.
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        match (*self, *other) {
            (NormalForm::Unaliased, NormalForm::Unaliased) => Some(cmp::Ordering::Equal),
            (NormalForm::PixelPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Equal),
            (NormalForm::ImagePacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Equal),
            (NormalForm::RowMajorPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Equal),
            (NormalForm::ColumnMajorPacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Equal),

            (NormalForm::Unaliased, _) => Some(cmp::Ordering::Less),
            (_, NormalForm::Unaliased) => Some(cmp::Ordering::Greater),

            (NormalForm::PixelPacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less),
            (NormalForm::PixelPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less),
            (NormalForm::RowMajorPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Greater),
            (NormalForm::ColumnMajorPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Greater),

            (NormalForm::ImagePacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less),
            (NormalForm::ImagePacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less),
            (NormalForm::RowMajorPacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Greater),
            (NormalForm::ColumnMajorPacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Greater),

            (NormalForm::ImagePacked, NormalForm::PixelPacked) => None,
            (NormalForm::PixelPacked, NormalForm::ImagePacked) => None,
            (NormalForm::RowMajorPacked, NormalForm::ColumnMajorPacked) => None,
            (NormalForm::ColumnMajorPacked, NormalForm::RowMajorPacked) => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use buffer::GrayAlphaImage;
    use color::{LumaA, Rgb};

    #[test]
    fn aliasing_view() {
       let buffer = FlatSamples {
           samples: &[42],
           layout: SampleLayout {
               channels: 3,
               channel_stride: 0,
               width: 100,
               width_stride: 0,
               height: 100,
               height_stride: 0,
           },
           color_hint: None,
       };

       let view = buffer.as_view::<Rgb<usize>>()
           .expect("This is a valid view");
       let pixel_count = view.pixels()
           .inspect(|pixel| assert!(pixel.2 == Rgb([42, 42, 42])))
           .count();
       assert_eq!(pixel_count, 100*100);
    }

    #[test]
    fn mutable_view() {
        let mut buffer = FlatSamples {
            samples: [0; 18],
            layout: SampleLayout {
                channels: 2,
                channel_stride: 1,
                width: 3,
                width_stride: 2,
                height: 3,
                height_stride: 6,
            },
            color_hint: None,
        };

        {
            let mut view = buffer.as_view_mut::<LumaA<usize>>()
                .expect("This should be a valid mutable buffer");
            #[allow(deprecated)]
            let pixel_count = view.pixels_mut()
                .enumerate()
                .map(|(idx, (_, _, pixel))| *pixel = LumaA([2*idx, 2*idx + 1]))
                .count();
            assert_eq!(pixel_count, 9);
        }

        buffer.samples.iter()
            .enumerate()
            .for_each(|(idx, sample)| assert_eq!(idx, *sample));
    }

    #[test]
    fn normal_forms() {
        assert!(FlatSamples {
            samples: [0u8; 0],
            layout: SampleLayout {
                channels: 2,
                channel_stride: 1,
                width: 3,
                width_stride: 9,
                height: 3,
                height_stride: 28,
            },
            color_hint: None,
        }.is_normal(NormalForm::PixelPacked));

        assert!(FlatSamples {
            samples: [0u8; 0],
            layout: SampleLayout {
                channels: 2,
                channel_stride: 8,
                width: 4,
                width_stride: 1,
                height: 2,
                height_stride: 4,
            },
            color_hint: None,
        }.is_normal(NormalForm::ImagePacked));

        assert!(FlatSamples {
            samples: [0u8; 0],
            layout: SampleLayout {
                channels: 2,
                channel_stride: 1,
                width: 4,
                width_stride: 2,
                height: 2,
                height_stride: 8,
            },
            color_hint: None,
        }.is_normal(NormalForm::RowMajorPacked));

        assert!(FlatSamples {
            samples: [0u8; 0],
            layout: SampleLayout {
                channels: 2,
                channel_stride: 1,
                width: 4,
                width_stride: 4,
                height: 2,
                height_stride: 2,
            },
            color_hint: None,
        }.is_normal(NormalForm::ColumnMajorPacked));
    }

    #[test]
    fn image_buffer_conversion() {
        let expected_layout = SampleLayout {
            channels: 2,
            channel_stride: 1,
            width: 4,
            width_stride: 2,
            height: 2,
            height_stride: 8,
        };

        let initial = GrayAlphaImage::new(expected_layout.width, expected_layout.height);
        let buffer = initial.into_flat_samples();

        assert_eq!(buffer.layout, expected_layout);

        let _: GrayAlphaImage = buffer.try_into_buffer().unwrap_or_else(|(error, _)|
            panic!("Expected buffer to be convertible but {:?}", error));
    }
}