1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Functions for randomly accessing and sampling sequences. use super::Rng; // This crate is only enabled when either std or alloc is available. // BTreeMap is not as fast in tests, but better than nothing. #[cfg(feature="std")] use std::collections::HashMap; #[cfg(not(feature="std"))] use alloc::btree_map::BTreeMap; #[cfg(not(feature="std"))] use alloc::Vec; /// Randomly sample `amount` elements from a finite iterator. /// /// The following can be returned: /// - `Ok`: `Vec` of `amount` non-repeating randomly sampled elements. The order is not random. /// - `Err`: `Vec` of all the elements from `iterable` in sequential order. This happens when the /// length of `iterable` was less than `amount`. This is considered an error since exactly /// `amount` elements is typically expected. /// /// This implementation uses `O(len(iterable))` time and `O(amount)` memory. /// /// # Example /// /// ```rust /// use rand::{thread_rng, seq}; /// /// let mut rng = thread_rng(); /// let sample = seq::sample_iter(&mut rng, 1..100, 5).unwrap(); /// println!("{:?}", sample); /// ``` pub fn sample_iter<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Result<Vec<T>, Vec<T>> where I: IntoIterator<Item=T>, R: Rng, { let mut iter = iterable.into_iter(); let mut reservoir = Vec::with_capacity(amount); reservoir.extend(iter.by_ref().take(amount)); // Continue unless the iterator was exhausted // // note: this prevents iterators that "restart" from causing problems. // If the iterator stops once, then so do we. if reservoir.len() == amount { for (i, elem) in iter.enumerate() { let k = rng.gen_range(0, i + 1 + amount); if let Some(spot) = reservoir.get_mut(k) { *spot = elem; } } Ok(reservoir) } else { // Don't hang onto extra memory. There is a corner case where // `amount` was much less than `len(iterable)`. reservoir.shrink_to_fit(); Err(reservoir) } } /// Randomly sample exactly `amount` values from `slice`. /// /// The values are non-repeating and in random order. /// /// This implementation uses `O(amount)` time and memory. /// /// Panics if `amount > slice.len()` /// /// # Example /// /// ```rust /// use rand::{thread_rng, seq}; /// /// let mut rng = thread_rng(); /// let values = vec![5, 6, 1, 3, 4, 6, 7]; /// println!("{:?}", seq::sample_slice(&mut rng, &values, 3)); /// ``` pub fn sample_slice<R, T>(rng: &mut R, slice: &[T], amount: usize) -> Vec<T> where R: Rng, T: Clone { let indices = sample_indices(rng, slice.len(), amount); let mut out = Vec::with_capacity(amount); out.extend(indices.iter().map(|i| slice[*i].clone())); out } /// Randomly sample exactly `amount` references from `slice`. /// /// The references are non-repeating and in random order. /// /// This implementation uses `O(amount)` time and memory. /// /// Panics if `amount > slice.len()` /// /// # Example /// /// ```rust /// use rand::{thread_rng, seq}; /// /// let mut rng = thread_rng(); /// let values = vec![5, 6, 1, 3, 4, 6, 7]; /// println!("{:?}", seq::sample_slice_ref(&mut rng, &values, 3)); /// ``` pub fn sample_slice_ref<'a, R, T>(rng: &mut R, slice: &'a [T], amount: usize) -> Vec<&'a T> where R: Rng { let indices = sample_indices(rng, slice.len(), amount); let mut out = Vec::with_capacity(amount); out.extend(indices.iter().map(|i| &slice[*i])); out } /// Randomly sample exactly `amount` indices from `0..length`. /// /// The values are non-repeating and in random order. /// /// This implementation uses `O(amount)` time and memory. /// /// This method is used internally by the slice sampling methods, but it can sometimes be useful to /// have the indices themselves so this is provided as an alternative. /// /// Panics if `amount > length` pub fn sample_indices<R>(rng: &mut R, length: usize, amount: usize) -> Vec<usize> where R: Rng, { if amount > length { panic!("`amount` must be less than or equal to `slice.len()`"); } // We are going to have to allocate at least `amount` for the output no matter what. However, // if we use the `cached` version we will have to allocate `amount` as a HashMap as well since // it inserts an element for every loop. // // Therefore, if `amount >= length / 2` then inplace will be both faster and use less memory. // In fact, benchmarks show the inplace version is faster for length up to about 20 times // faster than amount. // // TODO: there is probably even more fine-tuning that can be done here since // `HashMap::with_capacity(amount)` probably allocates more than `amount` in practice, // and a trade off could probably be made between memory/cpu, since hashmap operations // are slower than array index swapping. if amount >= length / 20 { sample_indices_inplace(rng, length, amount) } else { sample_indices_cache(rng, length, amount) } } /// Sample an amount of indices using an inplace partial fisher yates method. /// /// This allocates the entire `length` of indices and randomizes only the first `amount`. /// It then truncates to `amount` and returns. /// /// This is better than using a HashMap "cache" when `amount >= length / 2` since it does not /// require allocating an extra cache and is much faster. fn sample_indices_inplace<R>(rng: &mut R, length: usize, amount: usize) -> Vec<usize> where R: Rng, { debug_assert!(amount <= length); let mut indices: Vec<usize> = Vec::with_capacity(length); indices.extend(0..length); for i in 0..amount { let j: usize = rng.gen_range(i, length); let tmp = indices[i]; indices[i] = indices[j]; indices[j] = tmp; } indices.truncate(amount); debug_assert_eq!(indices.len(), amount); indices } /// This method performs a partial fisher-yates on a range of indices using a HashMap /// as a cache to record potential collisions. /// /// The cache avoids allocating the entire `length` of values. This is especially useful when /// `amount <<< length`, i.e. select 3 non-repeating from 1_000_000 fn sample_indices_cache<R>( rng: &mut R, length: usize, amount: usize, ) -> Vec<usize> where R: Rng, { debug_assert!(amount <= length); #[cfg(feature="std")] let mut cache = HashMap::with_capacity(amount); #[cfg(not(feature="std"))] let mut cache = BTreeMap::new(); let mut out = Vec::with_capacity(amount); for i in 0..amount { let j: usize = rng.gen_range(i, length); // equiv: let tmp = slice[i]; let tmp = match cache.get(&i) { Some(e) => *e, None => i, }; // equiv: slice[i] = slice[j]; let x = match cache.get(&j) { Some(x) => *x, None => j, }; // equiv: slice[j] = tmp; cache.insert(j, tmp); // note that in the inplace version, slice[i] is automatically "returned" value out.push(x); } debug_assert_eq!(out.len(), amount); out } #[cfg(test)] mod test { use super::*; use {thread_rng, XorShiftRng, SeedableRng}; #[test] fn test_sample_iter() { let min_val = 1; let max_val = 100; let mut r = thread_rng(); let vals = (min_val..max_val).collect::<Vec<i32>>(); let small_sample = sample_iter(&mut r, vals.iter(), 5).unwrap(); let large_sample = sample_iter(&mut r, vals.iter(), vals.len() + 5).unwrap_err(); assert_eq!(small_sample.len(), 5); assert_eq!(large_sample.len(), vals.len()); // no randomization happens when amount >= len assert_eq!(large_sample, vals.iter().collect::<Vec<_>>()); assert!(small_sample.iter().all(|e| { **e >= min_val && **e <= max_val })); } #[test] fn test_sample_slice_boundaries() { let empty: &[u8] = &[]; let mut r = thread_rng(); // sample 0 items assert_eq!(sample_slice(&mut r, empty, 0), vec![]); assert_eq!(sample_slice(&mut r, &[42, 2, 42], 0), vec![]); // sample 1 item assert_eq!(sample_slice(&mut r, &[42], 1), vec![42]); let v = sample_slice(&mut r, &[1, 42], 1)[0]; assert!(v == 1 || v == 42); // sample "all" the items let v = sample_slice(&mut r, &[42, 133], 2); assert!(v == vec![42, 133] || v == vec![133, 42]); assert_eq!(sample_indices_inplace(&mut r, 0, 0), vec![]); assert_eq!(sample_indices_inplace(&mut r, 1, 0), vec![]); assert_eq!(sample_indices_inplace(&mut r, 1, 1), vec![0]); assert_eq!(sample_indices_cache(&mut r, 0, 0), vec![]); assert_eq!(sample_indices_cache(&mut r, 1, 0), vec![]); assert_eq!(sample_indices_cache(&mut r, 1, 1), vec![0]); // Make sure lucky 777's aren't lucky let slice = &[42, 777]; let mut num_42 = 0; let total = 1000; for _ in 0..total { let v = sample_slice(&mut r, slice, 1); assert_eq!(v.len(), 1); let v = v[0]; assert!(v == 42 || v == 777); if v == 42 { num_42 += 1; } } let ratio_42 = num_42 as f64 / 1000 as f64; assert!(0.4 <= ratio_42 || ratio_42 <= 0.6, "{}", ratio_42); } #[test] fn test_sample_slice() { let xor_rng = XorShiftRng::from_seed; let max_range = 100; let mut r = thread_rng(); for length in 1usize..max_range { let amount = r.gen_range(0, length); let seed: [u32; 4] = [ r.next_u32(), r.next_u32(), r.next_u32(), r.next_u32() ]; println!("Selecting indices: len={}, amount={}, seed={:?}", length, amount, seed); // assert that the two index methods give exactly the same result let inplace = sample_indices_inplace( &mut xor_rng(seed), length, amount); let cache = sample_indices_cache( &mut xor_rng(seed), length, amount); assert_eq!(inplace, cache); // assert the basics work let regular = sample_indices( &mut xor_rng(seed), length, amount); assert_eq!(regular.len(), amount); assert!(regular.iter().all(|e| *e < length)); assert_eq!(regular, inplace); // also test that sampling the slice works let vec: Vec<usize> = (0..length).collect(); { let result = sample_slice(&mut xor_rng(seed), &vec, amount); assert_eq!(result, regular); } { let result = sample_slice_ref(&mut xor_rng(seed), &vec, amount); let expected = regular.iter().map(|v| v).collect::<Vec<_>>(); assert_eq!(result, expected); } } } }