1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
use std::io::{self, Read, Seek};
use num_traits::{FromPrimitive, Num};
use std::collections::HashMap;
use std::string::FromUtf8Error;

use ::{ColorType, TiffError, TiffFormatError, TiffUnsupportedError, TiffResult};

use self::ifd::Directory;

use self::stream::{
    ByteOrder,
    EndianReader,
    SmartReader,
    LZWReader,
    PackBitsReader
};

pub mod ifd;
mod stream;

/// Result of a decoding process
#[derive(Debug)]
pub enum DecodingResult {
    /// A vector of unsigned bytes
    U8(Vec<u8>),
    /// A vector of unsigned words
    U16(Vec<u16>)
}

// A buffer for image decoding
enum DecodingBuffer<'a> {
    /// A slice of unsigned bytes
    U8(&'a mut [u8]),
    /// A slice of unsigned words
    U16(&'a mut [u16])
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, FromPrimitive)]
pub enum PhotometricInterpretation {
    WhiteIsZero = 0,
    BlackIsZero = 1,
    RGB = 2,
    RGBPalette = 3,
    TransparencyMask = 4,
    CMYK = 5,
    YCbCr = 6,
    CIELab = 8,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, FromPrimitive)]
pub enum CompressionMethod {
    None = 1,
    Huffman = 2,
    Fax3 = 3,
    Fax4 = 4,
    LZW = 5,
    JPEG = 6,
    PackBits = 0x8005
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, FromPrimitive)]
pub enum PlanarConfiguration {
    Chunky = 1,
    Planar = 2
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, FromPrimitive)]
enum Predictor {
    None = 1,
    Horizontal = 2
}

/// The representation of a TIFF decoder
///
/// Currently does not support decoding of interlaced images
#[derive(Debug)]
pub struct Decoder<R> where R: Read + Seek {
    reader: SmartReader<R>,
    byte_order: ByteOrder,
    next_ifd: Option<u32>,
    ifd: Option<Directory>,
    width: u32,
    height: u32,
    bits_per_sample: Vec<u8>,
    samples: u8,
    photometric_interpretation: PhotometricInterpretation,
    compression_method: CompressionMethod
}

trait Wrapping {
    fn wrapping_add(&self, other: Self) -> Self;
}

impl Wrapping for u8 {
    fn wrapping_add(&self, other: Self) -> Self {
        u8::wrapping_add(*self, other)
    }
}

impl Wrapping for u16 {
    fn wrapping_add(&self, other: Self) -> Self {
        u16::wrapping_add(*self, other)
    }
}

fn rev_hpredict_nsamp<T>(mut image: Vec<T>,
                         size: (u32, u32),
                         samples: usize)
                         -> Vec<T>
                         where T: Num + Copy + Wrapping {
    let width = size.0 as usize;
    let height = size.1 as usize;
    for row in 0..height {
        for col in samples..width * samples {
            let prev_pixel = image[(row * width * samples + col - samples)];
            let pixel = &mut image[(row * width * samples + col)];
            *pixel = pixel.wrapping_add(prev_pixel);
        }
    }
    image
}

fn rev_hpredict(image: DecodingResult, size: (u32, u32), color_type: ColorType) -> TiffResult<DecodingResult> {
    let samples = match color_type {
        ColorType::Gray(8) | ColorType::Gray(16) => 1,
        ColorType::RGB(8) | ColorType::RGB(16) => 3,
        ColorType::RGBA(8) | ColorType::RGBA(16) | ColorType::CMYK(8) => 4,
        _ => return Err(TiffError::UnsupportedError(TiffUnsupportedError::HorizontalPredictor(color_type)))
    };
    Ok(match image {
        DecodingResult::U8(buf) => {
            DecodingResult::U8(rev_hpredict_nsamp(buf, size, samples))
        },
        DecodingResult::U16(buf) => {
            DecodingResult::U16(rev_hpredict_nsamp(buf, size, samples))
        }
    })
}

impl<R: Read + Seek> Decoder<R> {
    /// Create a new decoder that decodes from the stream ```r```
    pub fn new(r: R) -> TiffResult<Decoder<R>> {
        Decoder {
            reader: SmartReader::wrap(r, ByteOrder::LittleEndian),
            byte_order: ByteOrder::LittleEndian,
            next_ifd: None,
            ifd: None,
            width: 0,
            height: 0,
            bits_per_sample: vec![1],
            samples: 1,
            photometric_interpretation: PhotometricInterpretation::BlackIsZero,
            compression_method: CompressionMethod::None
        }.init()
    }

    pub fn dimensions(&mut self) -> TiffResult<(u32, u32)> {
        Ok((self.width, self.height))
    }

    pub fn colortype(&mut self) -> TiffResult<ColorType> {
        match self.photometric_interpretation {
            // TODO: catch also [ 8, 8, 8, _] this does not work due to a bug in rust atm
            PhotometricInterpretation::RGB if self.bits_per_sample == [8, 8, 8, 8] => Ok(ColorType::RGBA(8)),
            PhotometricInterpretation::RGB if self.bits_per_sample == [8, 8, 8] => Ok(ColorType::RGB(8)),
            PhotometricInterpretation::RGB if self.bits_per_sample == [16, 16, 16, 16] => Ok(ColorType::RGBA(16)),
            PhotometricInterpretation::RGB if self.bits_per_sample == [16, 16, 16] => Ok(ColorType::RGB(16)),
            PhotometricInterpretation::CMYK if self.bits_per_sample == [8, 8, 8, 8] => Ok(ColorType::CMYK(8)),
            PhotometricInterpretation::BlackIsZero | PhotometricInterpretation::WhiteIsZero
                                           if self.bits_per_sample.len() == 1 => Ok(ColorType::Gray(self.bits_per_sample[0])),

            // TODO: this is bad we should not fail at this point
            _ => Err(TiffError::UnsupportedError(TiffUnsupportedError::InterpretationWithBits(self.photometric_interpretation, self.bits_per_sample.clone())))
        }
    }

    fn read_header(&mut self) -> TiffResult<()> {
        let mut endianess = Vec::with_capacity(2);
        try!(self.reader.by_ref().take(2).read_to_end(&mut endianess));
        match &*endianess {
            b"II" => {
                self.byte_order = ByteOrder::LittleEndian;
                self.reader.byte_order = ByteOrder::LittleEndian; },
            b"MM" => {
                self.byte_order = ByteOrder::BigEndian;
                self.reader.byte_order = ByteOrder::BigEndian;  },
            _ => return Err(TiffError::FormatError(TiffFormatError::TiffSignatureNotFound))
        }
        if try!(self.read_short()) != 42 {
            return Err(TiffError::FormatError(TiffFormatError::TiffSignatureInvalid))
        }
        self.next_ifd = match try!(self.read_long()) {
            0 => None,
            n => Some(n)
        };
        Ok(())
    }

    /// Initializes the decoder.
    pub fn init(mut self) -> TiffResult<Decoder<R>> {
        try!(self.read_header());
        self.next_image()
    }

    /// Reads in the next image.
    /// If there is no further image in the TIFF file a format error is returned.
    /// To determine whether there are more images call `TIFFDecoder::more_images` instead.
    pub fn next_image(mut self) -> TiffResult<Decoder<R>> {
        self.ifd = Some(try!(self.read_ifd()));
        self.width = try!(self.get_tag_u32(ifd::Tag::ImageWidth));
        self.height = try!(self.get_tag_u32(ifd::Tag::ImageLength));
        self.photometric_interpretation = match FromPrimitive::from_u32(
            try!(self.get_tag_u32(ifd::Tag::PhotometricInterpretation))
        ) {
            Some(val) => val,
            None => return Err(TiffError::UnsupportedError(TiffUnsupportedError::UnknownInterpretation))
        };
        if let Some(val) = try!(self.find_tag_u32(ifd::Tag::Compression)) {
            match FromPrimitive::from_u32(val) {
                Some(method) =>  {
                    self.compression_method = method
                },
                None => return Err(TiffError::UnsupportedError(TiffUnsupportedError::UnknownCompressionMethod))
            }
        }
        if let Some(val) = try!(self.find_tag_u32(ifd::Tag::SamplesPerPixel)) {
            self.samples = val as u8
        }
        match self.samples {
            1 => {
                if let Some(val) = try!(self.find_tag_u32(ifd::Tag::BitsPerSample)) {
                    self.bits_per_sample = vec![val as u8]
                }
            }
            3 | 4 => {
                if let Some(val) = try!(self.find_tag_u32_vec(ifd::Tag::BitsPerSample)) {
                    self.bits_per_sample = val.iter().map(|&v| v as u8).collect()
                }

            }
            _ => return Err(TiffError::UnsupportedError(TiffUnsupportedError::UnsupportedSampleDepth(self.samples)))
        }
        Ok(self)
    }

    /// Returns `true` if there is at least one more image available.
    pub fn more_images(&self) -> bool {
        match self.next_ifd {
            Some(_) => true,
            None => false
        }
    }

    /// Returns the byte_order
    pub fn byte_order(&self) -> ByteOrder {
        self.byte_order
    }

    /// Reads a TIFF short value
    #[inline]
    pub fn read_short(&mut self) -> Result<u16, io::Error> {
        self.reader.read_u16()
    }

    /// Reads a TIFF long value
    #[inline]
    pub fn read_long(&mut self) -> Result<u32, io::Error> {
        self.reader.read_u32()
    }

    /// Reads a string
    #[inline]
    pub fn read_string(&mut self, length: usize) -> Result<String, FromUtf8Error> {
        let mut out = String::with_capacity(length);
        self.reader.read_to_string(&mut out);
        // Strings may be null-terminated, so we trim anything downstream of the null byte
        let trimmed = out.bytes().take_while(|&n| n != 0).collect::<Vec<u8>>();
        String::from_utf8(trimmed)
    }

    /// Reads a TIFF IFA offset/value field
    #[inline]
    pub fn read_offset(&mut self) -> Result<[u8; 4], io::Error> {
        let mut val = [0; 4];
        try!(self.reader.read_exact(&mut val));
        Ok(val)
    }

    /// Moves the cursor to the specified offset
    #[inline]
    pub fn goto_offset(&mut self, offset: u32) -> io::Result<()> {
        self.reader.seek(io::SeekFrom::Start(u64::from(offset))).map(|_| ())
    }

    /// Reads a IFD entry.
    // An IFD entry has four fields:
    //
    // Tag   2 bytes
    // Type  2 bytes
    // Count 4 bytes
    // Value 4 bytes either a pointer the value itself
    fn read_entry(&mut self) -> TiffResult<Option<(ifd::Tag, ifd::Entry)>> {
        let tag = ifd::Tag::from_u16(try!(self.read_short()));
        let type_: ifd::Type = match FromPrimitive::from_u16(try!(self.read_short())) {
            Some(t) => t,
            None => {
                // Unknown type. Skip this entry according to spec.
                try!(self.read_long());
                try!(self.read_long());
                return Ok(None)

            }
        };
        Ok(Some((tag, ifd::Entry::new(
            type_,
            try!(self.read_long()), // count
            try!(self.read_offset())  // offset
        ))))
    }

    /// Reads the next IFD
    fn read_ifd(&mut self) -> TiffResult<Directory> {
        let mut dir: Directory = HashMap::new();
        match self.next_ifd {
            None => return Err(TiffError::FormatError(TiffFormatError::ImageFileDirectoryNotFound)),
            Some(offset) => try!(self.goto_offset(offset))
        }
        for _ in 0..try!(self.read_short()) {
            let (tag, entry) = match try!(self.read_entry()) {
                Some(val) => val,
                None => continue // Unknown data type in tag, skip
            };
            dir.insert(tag, entry);
        }
        self.next_ifd = match try!(self.read_long()) {
            0 => None,
            n => Some(n)
        };
        Ok(dir)
    }

    /// Tries to retrieve a tag.
    /// Return `Ok(None)` if the tag is not present.
    pub fn find_tag(&mut self, tag: ifd::Tag) -> TiffResult<Option<ifd::Value>> {
        let entry = match self.ifd.as_ref().unwrap().get(&tag) {
            None => return Ok(None),
            Some(entry) => entry.clone(),
        };

        Ok(Some(try!(entry.val(self))))
    }

    /// Tries to retrieve a tag and convert it to the desired type.
    pub fn find_tag_u32(&mut self, tag: ifd::Tag) -> TiffResult<Option<u32>> {
        match self.find_tag(tag)? {
            Some(val) => val.into_u32().map(Some),
            None => Ok(None)
        }
    }

    /// Tries to retrieve a tag and convert it to the desired type.
    pub fn find_tag_u32_vec(&mut self, tag: ifd::Tag) -> TiffResult<Option<Vec<u32>>> {
        match self.find_tag(tag)? {
            Some(val) => val.into_u32_vec().map(Some),
            None => Ok(None)
        }
    }

    /// Tries to retrieve a tag.
    /// Returns an error if the tag is not present
    pub fn get_tag(&mut self, tag: ifd::Tag) -> TiffResult<ifd::Value> {
        match try!(self.find_tag(tag)) {
            Some(val) => Ok(val),
            None => Err(TiffError::FormatError(TiffFormatError::RequiredTagNotFound(tag))),
        }
    }

    /// Tries to retrieve a tag and convert it to the desired type.
    pub fn get_tag_u32(&mut self, tag: ifd::Tag) -> TiffResult<u32> {
        self.get_tag(tag)?.into_u32()
    }

    /// Tries to retrieve a tag and convert it to the desired type.
    pub fn get_tag_u32_vec(&mut self, tag: ifd::Tag) -> TiffResult<Vec<u32>> {
        self.get_tag(tag)?.into_u32_vec()
    }

    /// Decompresses the strip into the supplied buffer.
    /// Returns the number of bytes read.
    fn expand_strip<'a>(&mut self, buffer: DecodingBuffer<'a>, offset: u32, length: u32, max_uncompressed_length: usize) -> TiffResult<usize> {
        let color_type = try!(self.colortype());
        try!(self.goto_offset(offset));
        let (bytes, mut reader): (usize, Box<EndianReader>) = match self.compression_method {
            CompressionMethod::None => {
                let order = self.reader.byte_order;
                (length as usize, Box::new(SmartReader::wrap(&mut self.reader, order)))
            },
            CompressionMethod::LZW => {
                let (bytes, reader) = try!(LZWReader::new(&mut self.reader, length as usize, max_uncompressed_length));
                (bytes, Box::new(reader))
            },
            CompressionMethod::PackBits => {
                let order = self.reader.byte_order;
                let (bytes, reader) = try!(PackBitsReader::new(&mut self.reader, order, length as usize));
                (bytes, Box::new(reader))
            },
            method => return Err(TiffError::UnsupportedError(TiffUnsupportedError::UnsupportedCompressionMethod(method)))
        };
        Ok(match (color_type, buffer) {
            (ColorType:: RGB(8), DecodingBuffer::U8(ref mut buffer)) |
            (ColorType::RGBA(8), DecodingBuffer::U8(ref mut buffer)) |
            (ColorType::CMYK(8), DecodingBuffer::U8(ref mut buffer)) => {
                try!(reader.read_exact(&mut buffer[..bytes]));
                bytes
            }
            (ColorType::RGBA(16), DecodingBuffer::U16(ref mut buffer)) |
            (ColorType:: RGB(16), DecodingBuffer::U16(ref mut buffer)) => {
                try!(reader.read_u16_into(&mut buffer[..bytes/2]));
                bytes/2
            }
            (ColorType::Gray(16), DecodingBuffer::U16(ref mut buffer)) => {
                try!(reader.read_u16_into(&mut buffer[..bytes/2]));
                if self.photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                    for datum in buffer[..bytes/2].iter_mut() {
                        *datum = 0xffff - *datum
                    }
                }
                bytes/2
            }
            (ColorType::Gray(n), DecodingBuffer::U8(ref mut buffer)) if n <= 8 => {
                try!(reader.read_exact(&mut buffer[..bytes]));
                if self.photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                    for byte in buffer[..bytes].iter_mut() {
                        *byte = 0xff - *byte
                    }
                }
                bytes
            }
            (type_, _) => return Err(TiffError::UnsupportedError(TiffUnsupportedError::UnsupportedColorType(type_))),
        })
    }

    /// Decodes the entire image and return it as a Vector
    pub fn read_image(&mut self) -> TiffResult<DecodingResult> {
        let bits_per_pixel: u8 = self.bits_per_sample.iter().cloned().sum();
        let scanline_size_bits = self.width as usize * bits_per_pixel as usize;
        let scanline_size = (scanline_size_bits + 7) / 8;
        let rows_per_strip = self.get_tag_u32(ifd::Tag::RowsPerStrip)
            .unwrap_or(self.height) as usize;
        let buffer_size =
            self.width  as usize
            * self.height as usize
            * self.bits_per_sample.iter().count();
        let mut result = match self.bits_per_sample.iter().cloned().max().unwrap_or(8) {
            n if n <= 8 => DecodingResult::U8(vec![0; buffer_size]),
            n if n <= 16 => DecodingResult::U16(vec![0; buffer_size]),
            n => return Err(TiffError::UnsupportedError(TiffUnsupportedError::UnsupportedBitsPerChannel(n))),
        };
        if let Ok(config) = self.get_tag_u32(ifd::Tag::PlanarConfiguration) {
            match FromPrimitive::from_u32(config) {
                Some(PlanarConfiguration::Chunky) => {},
                config => return Err(TiffError::UnsupportedError(TiffUnsupportedError::UnsupportedPlanarConfig(config)))
            }
        }
        let mut units_read = 0;
        for (i, (&offset, &byte_count)) in try!(self.get_tag_u32_vec(ifd::Tag::StripOffsets))
        .iter().zip(try!(self.get_tag_u32_vec(ifd::Tag::StripByteCounts)).iter()).enumerate() {
            let uncompressed_strip_size = scanline_size
                * (self.height as usize - i * rows_per_strip).min(rows_per_strip);

            units_read += match result {
                DecodingResult::U8(ref mut buffer) => {
                    try!(self.expand_strip(
                        DecodingBuffer::U8(&mut buffer[units_read..]),
                        offset, byte_count, uncompressed_strip_size
                    ))
                },
                DecodingResult::U16(ref mut buffer) => {
                    try!(self.expand_strip(
                        DecodingBuffer::U16(&mut buffer[units_read..]),
                        offset, byte_count, uncompressed_strip_size
                    ))
                },
            };
            if units_read == buffer_size {
                break
            }
        }
        if units_read < buffer_size {
            return Err(TiffError::FormatError(TiffFormatError::InconsistentSizesEncountered));
        }
        if let Ok(predictor) = self.get_tag_u32(ifd::Tag::Predictor) {
            result = match FromPrimitive::from_u32(predictor) {
                Some(Predictor::None) => result,
                Some(Predictor::Horizontal) => {
                    try!(rev_hpredict(
                        result,
                        try!(self.dimensions()),
                        try!(self.colortype())
                    ))
                },
                None => return Err(TiffError::FormatError(TiffFormatError::UnknownPredictor(predictor))),
            }
        }
        Ok(result)
    }
}