1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
// Copyright (c) 2016 The vulkano developers // Licensed under the Apache License, Version 2.0 // <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT // license <LICENSE-MIT or http://opensource.org/licenses/MIT>, // at your option. All files in the project carrying such // notice may not be copied, modified, or distributed except // according to those terms. use buffer::BufferAccess; use format::ClearValue; use format::Format; use format::PossibleDepthFormatDesc; use format::PossibleDepthStencilFormatDesc; use format::PossibleFloatFormatDesc; use format::PossibleSintFormatDesc; use format::PossibleStencilFormatDesc; use format::PossibleUintFormatDesc; use format::PossibleCompressedFormatDesc; use image::Dimensions; use image::ImageDimensions; use image::ImageLayout; use image::sys::UnsafeImage; use image::sys::UnsafeImageView; use sampler::Sampler; use sync::AccessError; use SafeDeref; /// Trait for types that represent the way a GPU can access an image. pub unsafe trait ImageAccess { /// Returns the inner unsafe image object used by this image. fn inner(&self) -> ImageInner; /// Returns the format of this image. #[inline] fn format(&self) -> Format { self.inner().image.format() } /// Returns true if the image is a color image. #[inline] fn has_color(&self) -> bool { let format = self.format(); format.is_float() || format.is_uint() || format.is_sint() || format.is_compressed() } /// Returns true if the image has a depth component. In other words, if it is a depth or a /// depth-stencil format. #[inline] fn has_depth(&self) -> bool { let format = self.format(); format.is_depth() || format.is_depth_stencil() } /// Returns true if the image has a stencil component. In other words, if it is a stencil or a /// depth-stencil format. #[inline] fn has_stencil(&self) -> bool { let format = self.format(); format.is_stencil() || format.is_depth_stencil() } /// Returns the number of mipmap levels of this image. #[inline] fn mipmap_levels(&self) -> u32 { // TODO: not necessarily correct because of the new inner() design? self.inner().image.mipmap_levels() } /// Returns the number of samples of this image. #[inline] fn samples(&self) -> u32 { self.inner().image.samples() } /// Returns the dimensions of the image. #[inline] fn dimensions(&self) -> ImageDimensions { // TODO: not necessarily correct because of the new inner() design? self.inner().image.dimensions() } /// Returns true if the image can be used as a source for blits. #[inline] fn supports_blit_source(&self) -> bool { self.inner().image.supports_blit_source() } /// Returns true if the image can be used as a destination for blits. #[inline] fn supports_blit_destination(&self) -> bool { self.inner().image.supports_blit_destination() } /// When images are created their memory layout is initially `Undefined` or `Preinitialized`. /// This method allows the image memory barrier creation process to signal when an image /// has been transitioned out of its initial `Undefined` or `Preinitialized` state. This /// allows vulkano to avoid creating unnecessary image memory barriers between future /// uses of the image. /// /// ## Unsafe /// /// If a user calls this method outside of the intended context and signals that the layout /// is no longer `Undefined` or `Preinitialized` when it is still in an `Undefined` or /// `Preinitialized` state, this may result in the vulkan implementation attempting to use /// an image in an invalid layout. The same problem must be considered by the implementer /// of the method. unsafe fn layout_initialized(&self) {} fn is_layout_initialized(&self) -> bool {false} unsafe fn preinitialized_layout(&self) -> bool { self.inner().image.preinitialized_layout() } /// Returns the layout that the image has when it is first used in a primary command buffer. /// /// The first time you use an image in an `AutoCommandBufferBuilder`, vulkano will suppose that /// the image is in the layout returned by this function. Later when the command buffer is /// submitted vulkano will check whether the image is actually in this layout, and if it is not /// the case then an error will be returned. /// TODO: ^ that check is not yet implemented fn initial_layout_requirement(&self) -> ImageLayout; /// Returns the layout that the image must be returned to before the end of the command buffer. /// /// When an image is used in an `AutoCommandBufferBuilder` vulkano will automatically /// transition this image to the layout returned by this function at the end of the command /// buffer, if necessary. /// /// Except for special cases, this value should likely be the same as the one returned by /// `initial_layout_requirement` so that the user can submit multiple command buffers that use /// this image one after the other. fn final_layout_requirement(&self) -> ImageLayout; /// Wraps around this `ImageAccess` and returns an identical `ImageAccess` but whose initial /// layout requirement is either `Undefined` or `Preinitialized`. #[inline] unsafe fn forced_undefined_initial_layout(self, preinitialized: bool) -> ImageAccessFromUndefinedLayout<Self> where Self: Sized { ImageAccessFromUndefinedLayout { image: self, preinitialized: preinitialized, } } /// Returns true if an access to `self` potentially overlaps the same memory as an /// access to `other`. /// /// If this function returns `false`, this means that we are allowed to access the content /// of `self` at the same time as the content of `other` without causing a data race. /// /// Note that the function must be transitive. In other words if `conflicts(a, b)` is true and /// `conflicts(b, c)` is true, then `conflicts(a, c)` must be true as well. fn conflicts_buffer(&self, other: &dyn BufferAccess) -> bool; /// Returns true if an access to `self` potentially overlaps the same memory as an /// access to `other`. /// /// If this function returns `false`, this means that we are allowed to access the content /// of `self` at the same time as the content of `other` without causing a data race. /// /// Note that the function must be transitive. In other words if `conflicts(a, b)` is true and /// `conflicts(b, c)` is true, then `conflicts(a, c)` must be true as well. fn conflicts_image(&self, other: &dyn ImageAccess) -> bool; /// Returns a key that uniquely identifies the memory content of the image. /// Two ranges that potentially overlap in memory must return the same key. /// /// The key is shared amongst all buffers and images, which means that you can make several /// different image objects share the same memory, or make some image objects share memory /// with buffers, as long as they return the same key. /// /// Since it is possible to accidentally return the same key for memory ranges that don't /// overlap, the `conflicts_image` or `conflicts_buffer` function should always be called to /// verify whether they actually overlap. fn conflict_key(&self) -> u64; /// Locks the resource for usage on the GPU. Returns an error if the lock can't be acquired. /// /// After this function returns `Ok`, you are authorized to use the image on the GPU. If the /// GPU operation requires an exclusive access to the image (which includes image layout /// transitions) then `exclusive_access` should be true. /// /// The `expected_layout` is the layout we expect the image to be in when we lock it. If the /// actual layout doesn't match this expected layout, then an error should be returned. If /// `Undefined` is passed, that means that the caller doesn't care about the actual layout, /// and that a layout mismatch shouldn't return an error. /// /// This function exists to prevent the user from causing a data race by reading and writing /// to the same resource at the same time. /// /// If you call this function, you should call `unlock()` once the resource is no longer in use /// by the GPU. The implementation is not expected to automatically perform any unlocking and /// can rely on the fact that `unlock()` is going to be called. fn try_gpu_lock(&self, exclusive_access: bool, expected_layout: ImageLayout) -> Result<(), AccessError>; /// Locks the resource for usage on the GPU. Supposes that the resource is already locked, and /// simply increases the lock by one. /// /// Must only be called after `try_gpu_lock()` succeeded. /// /// If you call this function, you should call `unlock()` once the resource is no longer in use /// by the GPU. The implementation is not expected to automatically perform any unlocking and /// can rely on the fact that `unlock()` is going to be called. unsafe fn increase_gpu_lock(&self); /// Unlocks the resource previously acquired with `try_gpu_lock` or `increase_gpu_lock`. /// /// If the GPU operation that we unlock from transitioned the image to another layout, then /// it should be passed as parameter. /// /// A layout transition requires exclusive access to the image, which means two things: /// /// - The implementation can panic if it finds out that the layout is not the same as it /// currently is and that it is not locked in exclusive mode. /// - There shouldn't be any possible race between `unlock` and `try_gpu_lock`, since /// `try_gpu_lock` should fail if the image is already locked in exclusive mode. /// /// # Safety /// /// - Must only be called once per previous lock. /// - The transitioned layout must be supported by the image (eg. the layout shouldn't be /// `ColorAttachmentOptimal` if the image wasn't created with the `color_attachment` usage). /// - The transitioned layout must not be `Undefined`. /// unsafe fn unlock(&self, transitioned_layout: Option<ImageLayout>); } /// Inner information about an image. #[derive(Copy, Clone, Debug)] pub struct ImageInner<'a> { /// The underlying image object. pub image: &'a UnsafeImage, /// The first layer of `image` to consider. pub first_layer: usize, /// The number of layers of `image` to consider. pub num_layers: usize, /// The first mipmap level of `image` to consider. pub first_mipmap_level: usize, /// The number of mipmap levels of `image` to consider. pub num_mipmap_levels: usize, } unsafe impl<T> ImageAccess for T where T: SafeDeref, T::Target: ImageAccess { #[inline] fn inner(&self) -> ImageInner { (**self).inner() } #[inline] fn initial_layout_requirement(&self) -> ImageLayout { (**self).initial_layout_requirement() } #[inline] fn final_layout_requirement(&self) -> ImageLayout { (**self).final_layout_requirement() } #[inline] fn conflicts_buffer(&self, other: &dyn BufferAccess) -> bool { (**self).conflicts_buffer(other) } #[inline] fn conflicts_image(&self, other: &dyn ImageAccess) -> bool { (**self).conflicts_image(other) } #[inline] fn conflict_key(&self) -> u64 { (**self).conflict_key() } #[inline] fn try_gpu_lock(&self, exclusive_access: bool, expected_layout: ImageLayout) -> Result<(), AccessError> { (**self).try_gpu_lock(exclusive_access, expected_layout) } #[inline] unsafe fn increase_gpu_lock(&self) { (**self).increase_gpu_lock() } #[inline] unsafe fn unlock(&self, transitioned_layout: Option<ImageLayout>) { (**self).unlock(transitioned_layout) } #[inline] unsafe fn layout_initialized(&self) { (**self).layout_initialized(); } #[inline] fn is_layout_initialized(&self) -> bool { (**self).is_layout_initialized() } } /// Wraps around an object that implements `ImageAccess` and modifies the initial layout /// requirement to be either `Undefined` or `Preinitialized`. #[derive(Debug, Copy, Clone)] pub struct ImageAccessFromUndefinedLayout<I> { image: I, preinitialized: bool, } unsafe impl<I> ImageAccess for ImageAccessFromUndefinedLayout<I> where I: ImageAccess { #[inline] fn inner(&self) -> ImageInner { self.image.inner() } #[inline] fn initial_layout_requirement(&self) -> ImageLayout { if self.preinitialized { ImageLayout::Preinitialized } else { ImageLayout::Undefined } } #[inline] fn final_layout_requirement(&self) -> ImageLayout { self.image.final_layout_requirement() } #[inline] fn conflicts_buffer(&self, other: &dyn BufferAccess) -> bool { self.image.conflicts_buffer(other) } #[inline] fn conflicts_image(&self, other: &dyn ImageAccess) -> bool { self.image.conflicts_image(other) } #[inline] fn conflict_key(&self) -> u64 { self.image.conflict_key() } #[inline] fn try_gpu_lock(&self, exclusive_access: bool, expected_layout: ImageLayout) -> Result<(), AccessError> { self.image.try_gpu_lock(exclusive_access, expected_layout) } #[inline] unsafe fn increase_gpu_lock(&self) { self.image.increase_gpu_lock() } #[inline] unsafe fn unlock(&self, new_layout: Option<ImageLayout>) { self.image.unlock(new_layout) } } /// Extension trait for images. Checks whether the value `T` can be used as a clear value for the /// given image. // TODO: isn't that for image views instead? pub unsafe trait ImageClearValue<T>: ImageAccess { fn decode(&self, T) -> Option<ClearValue>; } pub unsafe trait ImageContent<P>: ImageAccess { /// Checks whether pixels of type `P` match the format of the image. fn matches_format(&self) -> bool; } /// Trait for types that represent the GPU can access an image view. pub unsafe trait ImageViewAccess { fn parent(&self) -> &dyn ImageAccess; /// Returns the dimensions of the image view. fn dimensions(&self) -> Dimensions; /// Returns the inner unsafe image view object used by this image view. fn inner(&self) -> &UnsafeImageView; /// Returns the format of this view. This can be different from the parent's format. #[inline] fn format(&self) -> Format { // TODO: remove this default impl self.inner().format() } #[inline] fn samples(&self) -> u32 { self.parent().samples() } /// Returns the image layout to use in a descriptor with the given subresource. fn descriptor_set_storage_image_layout(&self) -> ImageLayout; /// Returns the image layout to use in a descriptor with the given subresource. fn descriptor_set_combined_image_sampler_layout(&self) -> ImageLayout; /// Returns the image layout to use in a descriptor with the given subresource. fn descriptor_set_sampled_image_layout(&self) -> ImageLayout; /// Returns the image layout to use in a descriptor with the given subresource. fn descriptor_set_input_attachment_layout(&self) -> ImageLayout; /// Returns true if the view doesn't use components swizzling. /// /// Must be true when the view is used as a framebuffer attachment or TODO: I don't remember /// the other thing. fn identity_swizzle(&self) -> bool; /// Returns true if the given sampler can be used with this image view. /// /// This method should check whether the sampler's configuration can be used with the format /// of the view. // TODO: return a Result and propagate it when binding to a descriptor set fn can_be_sampled(&self, _sampler: &Sampler) -> bool { true /* FIXME */ } //fn usable_as_render_pass_attachment(&self, ???) -> Result<(), ???>; } unsafe impl<T> ImageViewAccess for T where T: SafeDeref, T::Target: ImageViewAccess { #[inline] fn parent(&self) -> &dyn ImageAccess { (**self).parent() } #[inline] fn inner(&self) -> &UnsafeImageView { (**self).inner() } #[inline] fn dimensions(&self) -> Dimensions { (**self).dimensions() } #[inline] fn descriptor_set_storage_image_layout(&self) -> ImageLayout { (**self).descriptor_set_storage_image_layout() } #[inline] fn descriptor_set_combined_image_sampler_layout(&self) -> ImageLayout { (**self).descriptor_set_combined_image_sampler_layout() } #[inline] fn descriptor_set_sampled_image_layout(&self) -> ImageLayout { (**self).descriptor_set_sampled_image_layout() } #[inline] fn descriptor_set_input_attachment_layout(&self) -> ImageLayout { (**self).descriptor_set_input_attachment_layout() } #[inline] fn identity_swizzle(&self) -> bool { (**self).identity_swizzle() } #[inline] fn can_be_sampled(&self, sampler: &Sampler) -> bool { (**self).can_be_sampled(sampler) } } pub unsafe trait AttachmentImageView: ImageViewAccess { fn accept(&self, initial_layout: ImageLayout, final_layout: ImageLayout) -> bool; }