#![allow(dead_code)] #![allow(unused_variables)] #![allow(unused_mut)] extern crate cgmath; extern crate image; extern crate nalgebra as na; extern crate quick_xml; extern crate rand; extern crate sfml; use image::{DynamicImage, GenericImage, GenericImageView, Pixel, SubImage}; use sfml::graphics::*; use sfml::graphics::{ Color, RenderTarget, RenderWindow, }; use sfml::system::*; use sfml::system::Vector2 as sfVec2; use sfml::window::*; use sfml::window::{Event, Key, Style}; use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer}; use vulkano::command_buffer::AutoCommandBufferBuilder; use vulkano::descriptor::descriptor_set::PersistentDescriptorSet; use vulkano::device::{Device, DeviceExtensions}; use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice}; use vulkano::pipeline::ComputePipeline; use vulkano::sync::GpuFuture; use vulkano::sync; use std::sync::Arc; use std::fs; use crate::input::Input; use crate::slider::Slider; use crate::timer::Timer; mod slider; mod timer; mod input; mod util; // The container trait for all the shaders trait Effect: Drawable { fn update(&mut self, t: f32, x: f32, y: f32); fn name(&self) -> &str; fn as_drawable(&self) -> &Drawable; } // ======= LARGE MULTISPRITE SHADER DEMO =========== struct Edge<'t> { surface: RenderTexture, bg_sprite: Sprite<'t>, entities: Vec>, shader: Shader<'static>, } impl<'t> Edge<'t> { fn new(bg_texture: &'t Texture, entity_texture: &'t Texture) -> Self { let mut surface = RenderTexture::new(800, 600, false).unwrap(); surface.set_smooth(true); let mut bg_sprite = Sprite::with_texture(bg_texture); bg_sprite.set_position((135., 100.)); let mut entities = Vec::new(); for i in 0..6 { let mut entity = Sprite::with_texture(entity_texture); entity.set_texture_rect(&IntRect::new(96 * i, 0, 96, 96)); entities.push(entity); } let mut shader = Shader::from_file(None, None, Some("resources/shaders/edge.frag")).unwrap(); shader.set_uniform_current_texture("texture"); Self { surface, bg_sprite, entities, shader, } } } impl<'t> Drawable for Edge<'t> { fn draw<'a: 'shader, 'texture, 'shader, 'shader_texture>( &'a self, target: &mut RenderTarget, mut states: RenderStates<'texture, 'shader, 'shader_texture>, ) { states.shader = Some(&self.shader); target.draw_with_renderstates(&Sprite::with_texture(self.surface.texture()), states); } } impl<'t> Effect for Edge<'t> { fn update(&mut self, t: f32, x: f32, y: f32) { self.shader .set_uniform_float("edge_threshold", 1. - (x + y) / 2.); let entities_len = self.entities.len() as f32; for (i, en) in self.entities.iter_mut().enumerate() { let pos = ( (0.25 * (t * i as f32 + (entities_len - i as f32))).cos() * 300. + 350., (0.25 * (t * (entities_len - i as f32) + i as f32)).cos() * 200. + 250., ); en.set_position(pos); } self.surface.clear(&Color::WHITE); self.surface.draw(&self.bg_sprite); for en in &self.entities { self.surface.draw(en); } self.surface.display(); } fn as_drawable(&self) -> &Drawable { self } fn name(&self) -> &str { "edge post-effect" } } // ================================================= fn surrounding_pixels(x: u32, y: u32, img: &DynamicImage) -> Vec> { let mut pixels: Vec> = Vec::new(); if img.in_bounds(x+1, y+1) {pixels.push(img.get_pixel(x+1, y+1))} if img.in_bounds(x+1, y) {pixels.push(img.get_pixel(x+1, y))} if img.in_bounds(x, y+1) {pixels.push(img.get_pixel(x, y+1))} if x > 0 { if img.in_bounds(x-1, y+1) {pixels.push(img.get_pixel(x-1, y+1))} if img.in_bounds(x-1, y) {pixels.push(img.get_pixel(x-1, y))} } if y > 0 { if img.in_bounds(x+1, y-1) {pixels.push(img.get_pixel(x+1, y-1))} if img.in_bounds(x, y-1) {pixels.push(img.get_pixel(x, y-1))} if x > 0 { if img.in_bounds(x - 1, y - 1) { pixels.push(img.get_pixel(x - 1, y - 1)) } } } pixels } fn main() { // Create the vulkan instance, device, and device queue let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap(); let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap(); let (device, mut queues) = Device::new(physical, physical.supported_features(), &DeviceExtensions::none(), [(queue_family, 0.5)].iter().cloned()).unwrap(); let queue = queues.next().unwrap(); println!("Device initialized"); // Compile the shader and add it to a pipeline let pipeline = Arc::new({ mod cs { vulkano_shaders::shader!{ ty: "compute", path: "resources/shaders/add.compute" } } let shader = cs::Shader::load(device.clone()).unwrap(); ComputePipeline::new(device.clone(), &shader.main_entry_point(), &()).unwrap() }); // Load up the input image, determine some details let mut img = image::open("resources/images/funky-bird.jpg").unwrap(); let xy = img.dimensions(); let data_length = xy.0*xy.1*3; println!("Buffer length {}", data_length); { // Pull out the image data and place it in a sync'd CPU<->GPU buffer let data_buffer = { let mut buff = img.raw_pixels(); let mut buff = buff.iter(); let data_iter = (0 .. data_length).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; // Create the data descriptor set for our previously created shader pipeline let set = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0) .add_buffer(data_buffer.clone()).unwrap() .build().unwrap() ); // The command buffer I think pretty much serves to define what runs where for how many times let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap() .dispatch([1024, 1, 1], pipeline.clone(), set.clone(), ()).unwrap() .build().unwrap(); // Create a future for running the command buffer and then just fence it let future = sync::now(device.clone()) .then_execute(queue.clone(), command_buffer).unwrap() .then_signal_fence_and_flush().unwrap(); // I think this is redundant and returns immediately future.wait(None).unwrap(); // The buffer is sync'd so we can just read straight from the handle let data_buffer_content = data_buffer.read().unwrap(); // for x in 0 .. xy.0 { for y in 0 .. xy.1 { let r = data_buffer_content[((xy.0 * y + x) * 3 + 0) as usize] as u8; let g = data_buffer_content[((xy.0 * y + x) * 3 + 1) as usize] as u8; let b = data_buffer_content[((xy.0 * y + x) * 3 + 2) as usize] as u8; // let a = data_buffer_content[((xy.0 * y + x) * 4 + 3) as usize] as u8; let old = img.get_pixel(x, y); img.put_pixel(x, y, image::Rgba([r, g, b, 0])); } } } fs::remove_file("output.jpg"); img.save("output14.jpg"); return; println!("Starting"); let mut window = RenderWindow::new( (512, 512), "Custom drawable", Style::CLOSE, &Default::default(), ); let mut timer = Timer::new(); let mut input = Input::new(); //========================================== let font = Font::from_file("resources/fonts/sansation.ttf").unwrap(); let mut bg_texture = Texture::from_file("resources/images/sfml.png").unwrap(); bg_texture.set_smooth(true); let mut entity_texture = Texture::from_file("resources/images/devices.png").unwrap(); entity_texture.set_smooth(true); let mut effects: [Box; 1] = [ Box::new(Edge::new(&bg_texture, &entity_texture)), ]; let mut current = 0; let text_bg_texture = Texture::from_file("resources/images/text-background.png").unwrap(); let mut text_bg = Sprite::with_texture(&text_bg_texture); text_bg.set_position((0., 520.)); text_bg.set_color(&Color::rgba(255, 255, 255, 200)); //========================================== let mut slider = Slider::new(40.0, None); let step_size: f32 = 0.005; let mut elapsed_time: f32; let mut delta_time: f32; let mut accumulator_time: f32 = 0.0; let mut current_time: f32 = timer.elap_time(); while window.is_open() { while let Some(event) = window.poll_event() { match event { Event::Closed => return, Event::KeyPressed { code, .. } => { if code == Key::Escape { return; } } _ => {} } input.ingest(&event) } if input.is_held(Key::W) { } if input.is_held(Key::A) { } if input.is_held(Key::S) { } if input.is_held(Key::D) { } elapsed_time = timer.elap_time(); delta_time = elapsed_time - current_time; current_time = elapsed_time; if delta_time > 0.02 { delta_time = 0.02; } accumulator_time += delta_time; while (accumulator_time - step_size) >= step_size { accumulator_time -= step_size; } let x = window.mouse_position().x as f32 / window.size().x as f32; let y = window.mouse_position().y as f32 / window.size().y as f32; effects[current].update(elapsed_time*1.0, x, y); window.clear(&Color::BLACK); // window.draw(effects[current].as_drawable()); window.draw(&slider); window.display(); } }