You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Trac3r-rust/src/canvas/canvas_state.rs

668 lines
25 KiB

use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use std::collections::{HashMap, HashSet};
use vulkano::buffer::{BufferAccess, BufferUsage, ImmutableBuffer, CpuAccessibleBuffer};
use std::sync::Arc;
use vulkano::format::{ClearValue, Format, R8Unorm};
use vulkano::framebuffer::{FramebufferAbstract, Framebuffer, RenderPass, RenderPassAbstract};
use vulkano::device::{Device, Queue};
use vulkano::instance::PhysicalDevice;
use vulkano::image::immutable::ImmutableImage;
use vulkano::image::{Dimensions, ImageAccess, ImageDimensions, SwapchainImage, ImageUsage, AttachmentImage, ImageLayout};
use vulkano::sampler::{Sampler, SamplerAddressMode, MipmapMode, Filter};
use vulkano::descriptor::DescriptorSet;
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
use std::path::PathBuf;
use image::GenericImageView;
use std::iter::FromIterator;
use vulkano::swapchain::Capabilities;
use winit::Window;
use vulkano::pipeline::viewport::Viewport;
use vulkano::descriptor::descriptor::DescriptorDescTy::TexelBuffer;
use crate::canvas::canvas_frame::CanvasFrame;
use std::hash::Hash;
use crate::util::vertex_3d::{Vertex3D, TextVertex3D};
use vulkano::pipeline::depth_stencil::{StencilFaceFlags, DynamicStencilValue};
use vulkano::memory::pool::PotentialDedicatedAllocation::Generic;
use std::borrow::Borrow;
use std::fs::File;
use std::io::Read;
use rusttype::{Font, PositionedGlyph, Scale, Rect, point, GlyphId, Line, Curve, Segment};
use vulkano::pipeline::vertex::VertexDefinition;
use crate::canvas::managed::shader::dynamic_vertex::RuntimeVertexDef;
use crate::canvas::managed::handles::{CanvasTextureHandle, CanvasImageHandle, CanvasFontHandle, CompiledGraphicsPipelineHandle, Handle};
use crate::canvas::managed::gpu_buffers::{CanvasImage, CanvasTexture, CanvasFont};
use crate::canvas::managed::shader::shader_common::CompiledGraphicsPipeline;
use crate::canvas::managed::shader::generic_shader::GenericShader;
// I don't think this is going to work without getting into Box'ing
pub trait DrawableTest<V, H, In> {
fn get_vertices(&self) -> Vec<V>;
fn get_instances(&self) -> Vec<In>;
fn get_handle(&self) -> H;
}
/// A drawable object can be passed into a CanvasFrame to be rendered
/// Very generic implementation. (N % 2 == 0) vertices, ditto for texture coords, and rgba color
/// Provides Image and Texture handles for drawing
pub trait Drawable {
fn get_vertices(&self) -> Vec<(f32, f32, f32)>;
fn get_color(&self) -> (f32, f32, f32, f32);
fn get_ti_coords(&self) -> Vec<(f32, f32)>;
fn get_texture_handle(&self) -> Option<Arc<CanvasTextureHandle>>;
fn get_image_handle(&self) -> Option<Arc<CanvasImageHandle>>;
// fn get_text_handle(&self) -> Option<Arc<CanvasTextHandle>>;
fn collect(&self) -> Vec<RuntimeVertexDef> {
let color = self.get_color();
// self.get_vertices().iter().zip(self.get_ti_coords().iter()).map(|(a, b)|
// Vertex3D {
// v_position: [a.0, a.1, a.2],
// color: [color.0, color.1, color.2, color.3],
// ti_position: [b.0, b.1],
// }).collect()
// TODO
vec![RuntimeVertexDef::from_primitive(0)]
}
}
/// Canvas state is used for storage of texture and image buffers in addition to vertex buffers
/// Canvas state also contains logic for writing the stored buffers to the command_buffer
#[derive(Clone)]
pub struct CanvasState {
/// Generated during new()
dynamic_state: DynamicState,
/// Generated during new()
sampler: Arc<Sampler>,
// hold the image, texture, and Fonts the same was as we do CompuState
image_buffers: Vec<Arc<CanvasImage>>,
texture_buffers: Vec<Arc<CanvasTexture>>,
font_buffers: Vec<Arc<CanvasFont>>,
// Compiled Graphics pipelines have a handle which self describe their position in this vector
shader_buffers: Vec<Arc<Box<dyn CompiledGraphicsPipeline>>>,
// Hold onto the vertices we get from the Compu and Canvas Frames
// When the run comes around, push the vertices to the GPU
colored_vertex_buffer: Vec<Arc<(dyn BufferAccess + Send + Sync)>>,
textured_vertex_buffer: HashMap<Arc<CanvasTextureHandle>, Arc<(dyn BufferAccess + Send + Sync)>>,
image_vertex_buffer: HashMap<Arc<CanvasImageHandle>, Arc<(dyn BufferAccess + Send + Sync)>>,
text_instances: HashMap<Arc<CanvasFontHandle>, Arc<(dyn BufferAccess + Send + Sync)>>,
// Looks like we gotta hold onto the queue for managing textures
queue: Arc<Queue>,
device: Arc<Device>,
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
}
impl CanvasState {
/// This method is called once during initialization, then again whenever the window is resized
pub fn window_size_dependent_setup(&mut self, images: &[Arc<SwapchainImage<Window>>])
-> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
self.dynamic_state.viewports =
Some(vec![Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions.width() as f32, dimensions.height() as f32],
depth_range: 0.0..1.0,
}]);
let dimensions = [dimensions.width(), dimensions.height()];
let depth_buffer = AttachmentImage::transient(self.device.clone(), dimensions, Format::D32Sfloat_S8Uint).unwrap();
images.iter().map(|image| {
Arc::new(
Framebuffer::start(self.render_pass.clone())
.add(image.clone()).unwrap()
.add(depth_buffer.clone()).unwrap()
.build().unwrap()
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
/// Creates a Canvas State. Which at this point is pretty empty
pub fn new(queue: Arc<Queue>,
device: Arc<Device>,
physical: PhysicalDevice,
capabilities: Capabilities) -> CanvasState {
let format = capabilities.supported_formats[0].0;
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
device.clone(),
// Attachments are outgoing like f_color
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `load: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load: Clear,
// `store: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store: Store,
// `format: <ty>` indicates the type of the format of the image. This has to
// be one of the types of the `vulkano::format` module (or alternatively one
// of your structs that implements the `FormatDesc` trait). Here we use the
// same format as the swapchain.
format: format,
samples: 1,
},
depth: {
load: Clear,
store: DontCare,
format: Format::D32Sfloat_S8Uint,
samples: 1,
}
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {depth}
}
).unwrap());
CanvasState {
// TODO: Might need to move this
dynamic_state: DynamicState {
line_width: None,
viewports: None,
scissors: None,
compare_mask: Some(DynamicStencilValue {
face: StencilFaceFlags::StencilFrontAndBack,
value: 0xFF,
}),
write_mask: Some(DynamicStencilValue {
face: StencilFaceFlags::StencilFrontAndBack,
value: 0xFF,
}),
reference: Some(DynamicStencilValue {
face: StencilFaceFlags::StencilFrontAndBack,
value: 0xFF,
}),
},
sampler: Sampler::new(device.clone(),
Filter::Linear, Filter::Linear,
MipmapMode::Nearest,
SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(),
image_buffers: vec![],
texture_buffers: vec![],
shader_buffers: vec![],
font_buffers: vec![],
colored_vertex_buffer: vec![],
textured_vertex_buffer: Default::default(),
image_vertex_buffer: Default::default(),
text_instances: HashMap::default(),
queue: queue.clone(),
device: device.clone(),
render_pass: render_pass.clone(),
}
}
/// Using the dimensions and suggested usage, load a CanvasImage and return it's handle
pub fn create_image(&mut self, dimensions: (u32, u32), usage: ImageUsage) -> Arc<CanvasImageHandle> {
let handle = Arc::new(CanvasImageHandle { handle: self.image_buffers.len() as u32 });
let image = CanvasImage {
handle: handle.clone(),
buffer: AttachmentImage::with_usage(
self.device.clone(),
[dimensions.0, dimensions.1],
Format::R8G8B8A8Uint,
usage).unwrap(),
size: dimensions,
};
self.image_buffers.push(Arc::new(image));
handle
}
/// Return the image buffer from an input image handle
pub fn get_image(&self, image_handle: Arc<CanvasImageHandle>) -> Arc<AttachmentImage> {
self.image_buffers.get((*image_handle).clone().get_handle() as usize).unwrap()
.clone().buffer.clone()
}
/// Load a texture buffer from an input filename
fn get_texture_from_file(&self, image_filename: String) -> Arc<ImmutableImage<Format>> {
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from(image_filename));
let img = image::open(compute_path).expect("Couldn't find image");
let xy = img.dimensions();
let data_length = xy.0 * xy.1 * 4;
let pixel_count = img.raw_pixels().len();
let mut image_buffer = Vec::new();
if pixel_count != data_length as usize {
println!("Creating apha channel...");
for i in img.raw_pixels().iter() {
if (image_buffer.len() + 1) % 4 == 0 {
image_buffer.push(255);
}
image_buffer.push(*i);
}
image_buffer.push(255);
} else {
image_buffer = img.raw_pixels();
}
let (texture, tex_future) = ImmutableImage::from_iter(
image_buffer.iter().cloned(),
Dimensions::Dim2d { width: xy.0, height: xy.1 },
Format::R8G8B8A8Srgb,
self.queue.clone(),
).unwrap();
texture
}
/// Load a texture using it's filename from a file. Returns the handle of the loaded texture
pub fn load_texture(&mut self, filename: String) -> Option<Arc<CanvasTextureHandle>> {
let texture_buffer = self.get_texture_from_file(filename.clone());
let handle = Arc::new(CanvasTextureHandle {
handle: self.texture_buffers.len() as u32
});
let texture = Arc::new(CanvasTexture {
handle: handle.clone(),
buffer: self.get_texture_from_file(filename.clone()),
name: filename.clone(),
size: (0, 0),
});
self.texture_buffers.push(texture);
Some(handle)
}
/// Load and Compile a shader with the filename at resources/shaders
/// Takes physical and capabilities as we don't store that in Canvas
pub fn load_shader<T: 'static>(&mut self,
filename: String,
physical: PhysicalDevice,
capabilities: Capabilities) -> Option<Arc<CompiledGraphicsPipelineHandle>>
where T: CompiledGraphicsPipeline {
let handle = Arc::new(CompiledGraphicsPipelineHandle {
handle: self.shader_buffers.len() as u32
});
let shader: Box<dyn CompiledGraphicsPipeline> = Box::new(T::new(
filename.clone(),
self.device.clone(),
handle.clone(),
self.render_pass.clone(),
));
self.shader_buffers.push(Arc::new(shader));
Some(handle)
}
/// Using the dimensions and suggested usage, load a CanvasImage and return it's handle
pub fn load_font(&mut self, name: String) -> Arc<CanvasFontHandle> {
let handle = Arc::new(CanvasFontHandle { handle: self.font_buffers.len() as u32 });
self.font_buffers.push(Arc::new({
let font = Font::from_bytes({
let mut f = File::open("resources/fonts/sansation.ttf").expect("Font file not found");
let mut font_data = Vec::new();
f.read_to_end(&mut font_data).expect("Dont know");
font_data
}).unwrap();
let mut current_x = 0;
let mut current_y = 0;
let mut accumulator = Vec::new();
for i in (0..255) {
let glyph = font.glyph('d');
let s = glyph.scaled(Scale{ x: 1.0, y: 1.0 });
let shape = s.shape().unwrap();
for contour in shape {
for segment in contour.segments {
match segment {
Segment::Line(l) => {
accumulator.push(TextVertex3D {
position: [l.p[0].x as f32, l.p[0].y as f32, 0.0],
});
},
Segment::Curve(c) => {
accumulator.push(TextVertex3D {
position: [c.p[0].x as f32, c.p[0].y as f32, 0.0],
});
}
}
}
}
}
CanvasFont {
handle: handle.clone(),
font: font.clone(),
name: name,
buffer: ImmutableBuffer::from_iter(
accumulator.iter().cloned(),
BufferUsage::vertex_buffer(), self.queue.clone()).unwrap().0,
}
}));
handle
}
/// Using the texture name, iterates through the stored textures and matches by the name
pub fn get_texture_handle(&self, texture_name: String)
-> Option<Arc<CanvasTextureHandle>> {
for i in self.texture_buffers.clone() {
if i.name == texture_name {
return Some(i.handle.clone());
}
}
None
}
/// Using the shader name, iterates through the stored shaders and matches by the name
pub fn get_shader_handle(&self, shader_name: String)
-> Option<Arc<CompiledGraphicsPipelineHandle>> {
for shader in self.shader_buffers.clone() {
if shader.get_name() == shader_name {
return Some(shader.get_handle().clone());
}
}
None
}
/// Using the font name, iterates through the stored fonts and matches by the name
pub fn get_font_handle(&self, font_name: String) -> Option<Arc<CanvasFontHandle>> {
for font in self.font_buffers.clone() {
if font.name == font_name {
return Some(font.handle.clone());
}
}
None
}
/// Using the texture handle, grab the stored texture and return the buffer
pub fn get_texture(&self, texture_handle: Arc<CanvasTextureHandle>)
-> Arc<ImmutableImage<Format>> {
let handle = texture_handle.get_handle() as usize;
if let Some(i) = self.texture_buffers.get(handle) {
return i.clone().buffer.clone();
} else {
panic!("{} : Texture not loaded", handle);
}
}
/// Scrape all the values from the CanvasFrame and then allocate the vertex buffers
pub fn draw(&mut self, canvas_frame: CanvasFrame) {
// Consume the canvas frame
let mut textured_drawables = canvas_frame.textured_drawables;
let mut colored_drawables = canvas_frame.colored_drawables;
let mut image_drawables = canvas_frame.image_drawables;
let mut text_drawables = canvas_frame.text_drawables;
// Walk through the consumed items and allocate them to GPU buffers
self.colored_vertex_buffer.clear();
{
let g = hprof::enter("Colored Vertex Buffer");
self.colored_vertex_buffer.push(
ImmutableBuffer::from_iter(
colored_drawables.iter().cloned(),
BufferUsage::vertex_buffer(),
self.queue.clone(),
).unwrap().0
);
}
self.textured_vertex_buffer.clear();
{
let g = hprof::enter("Textured Vertex Buffer");
for (k, v) in textured_drawables.drain() {
let vertex_buffer = v.clone().get(0).unwrap().clone();
// TODO
// v.clone().iter()
// .fold(Vec::new(), |mut a: Vec<RuntimeVertexDef>, b| {
// a.extend(b);
// a
// });
self.textured_vertex_buffer.insert(
k.clone(),
ImmutableBuffer::from_iter(
vertex_buffer.iter().cloned(),
BufferUsage::vertex_buffer(),
self.queue.clone(),
).unwrap().0,
);
}
}
self.image_vertex_buffer.clear();
{
let g = hprof::enter("Image Vertex Buffer");
for (k, v) in image_drawables.drain() {
let vertex_buffer = v.clone().get(0).unwrap().clone();
// TODO
// v.clone().iter()
// .fold(Vec::new(), |mut a: Vec<&RuntimeVertexDef>, b| {
// a.extend(b);
// a
// });
self.image_vertex_buffer.insert(
k.clone(),
ImmutableBuffer::from_iter(
vertex_buffer.iter().cloned(),
BufferUsage::vertex_buffer(),
self.queue.clone(),
).unwrap().0,
);
}
}
self.text_instances.clear();
{
let g = hprof::enter("Text Instance Vertex Buffer");
for (k, v) in text_drawables.drain() {
self.text_instances.insert(
k.clone(),
ImmutableBuffer::from_iter(
v.iter().cloned(),
BufferUsage::all(),
self.queue.clone(),
).unwrap().0,
);
}
}
}
/// Builds the descriptor set for solid colors using the input kernel (needs to support solid colors)
fn get_solid_color_descriptor_set(&self, kernel: Arc<GenericShader>) -> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
kernel.clone().get_pipeline().clone(), 0,
).build().unwrap());
o
}
/// Pushes the draw commands to the command buffer. Requires the framebuffers and
/// image number to be passed in as they are taken care of by the vkprocessor
pub fn draw_commands(&mut self,
mut command_buffer: AutoCommandBufferBuilder,
framebuffers: Vec<Arc<dyn FramebufferAbstract + Send + Sync>>,
image_num: usize) -> AutoCommandBufferBuilder {
// Specify the color to clear the framebuffer with i.e. blue
let clear_values = vec!(
ClearValue::Float([0.0, 0.0, 1.0, 1.0]),
ClearValue::DepthStencil((1.0, 0x00)),
);
self.dynamic_state = DynamicState {
line_width: None,
viewports: self.dynamic_state.viewports.clone(),
scissors: None,
compare_mask: None,
write_mask: None,
reference: None,
};
let mut command_buffer = command_buffer.begin_render_pass(
framebuffers[image_num].clone(), false, clear_values.clone(),
).unwrap();
// Solid colors
let mut shader = self.shader_buffers.get(
self.get_shader_handle(String::from("color-passthrough"))
.unwrap().clone().get_handle() as usize
).unwrap();
// This looks a little weird as colored_vertex_buffer is a vec of GPU allocated vecs.
// But we can pass in multiple vertex buffers
if !self.colored_vertex_buffer.is_empty() {
command_buffer = command_buffer.draw(
shader.get_pipeline().clone(),
&self.dynamic_state.clone(),
self.colored_vertex_buffer.clone(),
(), (),
).unwrap();
}
// Images
let mut shader = self.shader_buffers.get(
self.get_shader_handle(String::from("simple_image"))
.unwrap().clone().get_handle() as usize
).unwrap();
if !self.image_vertex_buffer.is_empty() {
for (image_handle, vertex_buffer) in self.image_vertex_buffer.clone() {
let handle = image_handle.clone().get_handle() as usize;
let descriptor_set = self.image_buffers.get(handle).clone().unwrap().clone()
.get_descriptor_set(shader.get_pipeline().clone());
command_buffer = command_buffer.draw(
shader.get_pipeline().clone(),
// Multiple vertex buffers must have their definition in the pipeline!
&self.dynamic_state.clone(), vec![vertex_buffer],
vec![descriptor_set], (),
).unwrap();
}
}
// Textures
let mut shader = self.shader_buffers.get(
self.get_shader_handle(String::from("simple_texture"))
.unwrap().clone().get_handle() as usize
).unwrap();
if !self.textured_vertex_buffer.is_empty() {
for (texture_handle, vertex_buffer) in self.textured_vertex_buffer.clone() {
let handle = texture_handle.clone().get_handle() as usize;
let descriptor_set = self.texture_buffers.get(handle).clone().unwrap().clone()
.get_descriptor_set(shader.get_pipeline(), self.sampler.clone());
command_buffer = command_buffer.draw(
shader.get_pipeline().clone(),
// Multiple vertex buffers must have their definition in the pipeline!
&self.dynamic_state.clone(), vec![vertex_buffer],
vec![descriptor_set], (),
).unwrap();
}
}
// Text
let mut shader = self.shader_buffers.get(
self.get_shader_handle(String::from("simple_text"))
.unwrap().clone().get_handle() as usize
).unwrap();
//
// if !self.text_instances.is_empty() {
// for (font_handle, instance_buffer) in self.text_instances.clone() {
// let handle = font_handle.clone().handle as usize;
// let font = self.font_buffers.get(handle).clone().unwrap().clone();
// let descriptor_set = CanvasFont::get_descriptor_set(shader.get_pipeline());
//
// command_buffer = command_buffer.draw(
// shader.get_pipeline().clone(),
// // Multiple vertex buffers must have their definition in the pipeline!
// &self.dynamic_state.clone(),
// vec![font.get_vertex_buffer().clone(), instance_buffer.clone()],
// (), (),
// ).unwrap();
// }
// }
command_buffer
.end_render_pass()
.unwrap()
}
}