You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
686 lines
29 KiB
686 lines
29 KiB
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
|
|
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
|
|
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc};
|
|
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
|
|
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
|
|
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract};
|
|
use vulkano::sync::{GpuFuture, FlushError};
|
|
use vulkano::sync;
|
|
use std::time::SystemTime;
|
|
use std::sync::Arc;
|
|
use std::ffi::CStr;
|
|
use std::path::PathBuf;
|
|
use shade_runner as sr;
|
|
use image::{DynamicImage, ImageBuffer};
|
|
use image::GenericImageView;
|
|
use vulkano::descriptor::pipeline_layout::PipelineLayout;
|
|
use image::GenericImage;
|
|
use shade_runner::{ComputeLayout, CompileError, FragLayout, FragInput, FragOutput, VertInput, VertOutput, VertLayout};
|
|
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSetBuf, PersistentDescriptorSetImg, PersistentDescriptorSetSampler};
|
|
use shaderc::CompileOptions;
|
|
use vulkano::framebuffer::{Subpass, RenderPass, RenderPassAbstract, Framebuffer, FramebufferAbstract};
|
|
use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, GraphicsEntryPoint, SpecializationConstants, SpecializationMapEntry};
|
|
use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface, SwapchainCreationError, AcquireError};
|
|
use vulkano::swapchain::acquire_next_image;
|
|
use vulkano::image::swapchain::SwapchainImage;
|
|
use winit::{EventsLoop, WindowBuilder, Window, Event, WindowEvent};
|
|
use vulkano_win::VkSurfaceBuild;
|
|
use vulkano::pipeline::vertex::{SingleBufferDefinition, Vertex};
|
|
use vulkano::descriptor::PipelineLayoutAbstract;
|
|
use std::alloc::Layout;
|
|
use vulkano::pipeline::viewport::Viewport;
|
|
use image::ImageFormat;
|
|
use vulkano::image::immutable::ImmutableImage;
|
|
use vulkano::image::attachment::AttachmentImage;
|
|
use vulkano::image::{Dimensions, ImageUsage};
|
|
use vulkano::format::Format;
|
|
use vulkano::sampler::{Sampler, Filter, MipmapMode, SamplerAddressMode};
|
|
|
|
#[derive(Default, Debug, Clone)]
|
|
struct tVertex { position: [f32; 2] }
|
|
|
|
/// This method is called once during initialization, then again whenever the window is resized
|
|
fn window_size_dependent_setup(
|
|
images: &[Arc<SwapchainImage<Window>>],
|
|
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
|
|
dynamic_state: &mut DynamicState,
|
|
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
|
|
let dimensions = images[0].dimensions();
|
|
|
|
let viewport = Viewport {
|
|
origin: [0.0, 0.0],
|
|
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
|
|
depth_range: 0.0..1.0,
|
|
};
|
|
dynamic_state.viewports = Some(vec!(viewport));
|
|
|
|
images.iter().map(|image| {
|
|
Arc::new(
|
|
Framebuffer::start(render_pass.clone())
|
|
.add(image.clone()).unwrap()
|
|
.build().unwrap()
|
|
) as Arc<dyn FramebufferAbstract + Send + Sync>
|
|
}).collect::<Vec<_>>()
|
|
}
|
|
|
|
#[repr(C)]
|
|
struct MySpecConstants {
|
|
my_integer_constant: i32,
|
|
a_boolean: u32,
|
|
floating_point: f32,
|
|
}
|
|
|
|
unsafe impl SpecializationConstants for MySpecConstants {
|
|
fn descriptors() -> &'static [SpecializationMapEntry] {
|
|
static DESCRIPTORS: [SpecializationMapEntry; 3] = [
|
|
SpecializationMapEntry {
|
|
constant_id: 0,
|
|
offset: 0,
|
|
size: 4,
|
|
},
|
|
SpecializationMapEntry {
|
|
constant_id: 1,
|
|
offset: 4,
|
|
size: 4,
|
|
},
|
|
SpecializationMapEntry {
|
|
constant_id: 2,
|
|
offset: 8,
|
|
size: 4,
|
|
},
|
|
];
|
|
|
|
&DESCRIPTORS
|
|
}
|
|
}
|
|
|
|
|
|
pub struct VkProcessor<'a> {
|
|
pub instance: Arc<Instance>,
|
|
pub physical: PhysicalDevice<'a>,
|
|
pub graphics_pipeline: Option<Arc<GraphicsPipelineAbstract + Sync + Send>>,
|
|
pub compute_pipeline: Option<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>>,
|
|
pub device: Arc<Device>,
|
|
pub queues: QueuesIter,
|
|
pub queue: Arc<Queue>,
|
|
pub compute_set: Option<Arc<PersistentDescriptorSet<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>, ((((), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u32]>>>)>>>,
|
|
pub img_set: Option<Arc<PersistentDescriptorSet<Arc<dyn GraphicsPipelineAbstract + Send + Sync>, ((((), PersistentDescriptorSetImg<Arc<ImmutableImage<Format>>>), PersistentDescriptorSetSampler), PersistentDescriptorSetImg<Arc<AttachmentImage>>)>>>,
|
|
pub graphics_image_buffer: Option<Arc<ImmutableImage<Format>>>,
|
|
pub image_buffer: Vec<u8>,
|
|
pub img_buffers: Vec<Arc<CpuAccessibleBuffer<[u8]>>>,
|
|
pub settings_buffer: Option<Arc<CpuAccessibleBuffer<[u32]>>>,
|
|
pub swapchain: Option<Arc<Swapchain<Window>>>,
|
|
pub images: Option<Vec<Arc<SwapchainImage<Window>>>>,
|
|
pub xy: (u32, u32),
|
|
pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>,
|
|
pub vertex_buffer: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>,
|
|
pub dynamic_state: DynamicState,
|
|
pub graphics_iamge_swap_buffer: Option<std::sync::Arc<vulkano::image::attachment::AttachmentImage>>,
|
|
}
|
|
|
|
|
|
impl<'a> VkProcessor<'a> {
|
|
|
|
pub fn new(instance: &'a Arc<Instance>, surface: &'a Arc<Surface<Window>>) -> VkProcessor<'a> {
|
|
let physical = PhysicalDevice::enumerate(instance).next().unwrap();
|
|
|
|
let queue_family = physical.queue_families().find(|&q| {
|
|
// We take the first queue that supports drawing to our window.
|
|
q.supports_graphics() &&
|
|
surface.is_supported(q).unwrap_or(false) &&
|
|
q.supports_compute()
|
|
}).unwrap();
|
|
|
|
let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() };
|
|
|
|
let (device, mut queues) = Device::new(physical,
|
|
physical.supported_features(),
|
|
&device_ext,
|
|
[(queue_family, 0.5)].iter().cloned()).unwrap();
|
|
let queue = queues.next().unwrap();
|
|
|
|
VkProcessor {
|
|
instance: instance.clone(),
|
|
physical: physical.clone(),
|
|
graphics_pipeline: Option::None,
|
|
compute_pipeline: Option::None,
|
|
device: device.clone(),
|
|
queue: queue,
|
|
queues: queues,
|
|
compute_set: Option::None,
|
|
img_set: Option::None,
|
|
graphics_image_buffer: None,
|
|
image_buffer: Vec::new(),
|
|
img_buffers: Vec::new(),
|
|
settings_buffer: Option::None,
|
|
swapchain: Option::None,
|
|
images: Option::None,
|
|
xy: (0, 0),
|
|
render_pass: Option::None,
|
|
vertex_buffer: Option::None,
|
|
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None },
|
|
graphics_iamge_swap_buffer: None,
|
|
}
|
|
}
|
|
|
|
pub fn compile_kernel(&mut self, filename: String) {
|
|
let project_root =
|
|
std::env::current_dir()
|
|
.expect("failed to get root directory");
|
|
|
|
let mut compute_path = project_root.clone();
|
|
compute_path.push(PathBuf::from("resources/shaders/"));
|
|
compute_path.push(PathBuf::from(filename));
|
|
|
|
|
|
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
|
|
options.add_macro_definition("SETTING_POS_X", Some("0"));
|
|
options.add_macro_definition("SETTING_POS_Y", Some("1"));
|
|
options.add_macro_definition("SETTING_BUCKETS_START", Some("2"));
|
|
options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2"));
|
|
|
|
let shader =
|
|
sr::load_compute_with_options(compute_path, options)
|
|
.expect("Failed to compile");
|
|
|
|
let vulkano_entry =
|
|
sr::parse_compute(&shader)
|
|
.expect("failed to parse");
|
|
|
|
let x = unsafe {
|
|
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.compute)
|
|
}.unwrap();
|
|
|
|
let compute_pipeline = Arc::new({
|
|
unsafe {
|
|
ComputePipeline::new(self.device.clone(), &x.compute_entry_point(
|
|
CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
|
vulkano_entry.compute_layout), &(),
|
|
).unwrap()
|
|
}
|
|
});
|
|
|
|
self.compute_pipeline = Some(compute_pipeline);
|
|
}
|
|
|
|
pub fn compile_shaders(&mut self, filename: String, surface: &'a Arc<Surface<Window>>) {
|
|
|
|
// Before we can draw on the surface, we have to create what is called a swapchain. Creating
|
|
// a swapchain allocates the color buffers that will contain the image that will ultimately
|
|
// be visible on the screen. These images are returned alongside with the swapchain.
|
|
let (mut swapchain, images) = {
|
|
let capabilities = surface.capabilities(self.physical).unwrap();
|
|
let usage = capabilities.supported_usage_flags;
|
|
let alpha = capabilities.supported_composite_alpha.iter().next().unwrap();
|
|
// Choosing the internal format that the images will have.
|
|
let format = capabilities.supported_formats[0].0;
|
|
|
|
// Set the swapchains window dimensions
|
|
let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
|
|
// convert to physical pixels
|
|
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
|
|
[dimensions.0, dimensions.1]
|
|
} else {
|
|
// The window no longer exists so exit the application.
|
|
return;
|
|
};
|
|
|
|
Swapchain::new(self.device.clone(),
|
|
surface.clone(),
|
|
capabilities.min_image_count,
|
|
format,
|
|
initial_dimensions,
|
|
1, // Layers
|
|
usage,
|
|
&self.queue,
|
|
SurfaceTransform::Identity,
|
|
alpha,
|
|
PresentMode::Fifo, true, None).unwrap()
|
|
};
|
|
|
|
self.swapchain = Some(swapchain);
|
|
self.images = Some(images);
|
|
|
|
let project_root =
|
|
std::env::current_dir()
|
|
.expect("failed to get root directory");
|
|
|
|
let mut shader_path = project_root.clone();
|
|
shader_path.push(PathBuf::from("resources/shaders/"));
|
|
|
|
let mut vertex_shader_path = project_root.clone();
|
|
vertex_shader_path.push(PathBuf::from("resources/shaders/"));
|
|
vertex_shader_path.push(PathBuf::from(filename.clone() + ".vertex"));
|
|
|
|
let mut fragment_shader_path = project_root.clone();
|
|
fragment_shader_path.push(PathBuf::from("resources/shaders/"));
|
|
fragment_shader_path.push(PathBuf::from(filename.clone() + ".fragment"));
|
|
|
|
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
|
|
options.add_macro_definition("SETTING_POS_X", Some("0"));
|
|
options.add_macro_definition("SETTING_POS_Y", Some("1"));
|
|
options.add_macro_definition("SETTING_BUCKETS_START", Some("2"));
|
|
options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2"));
|
|
|
|
let shader =
|
|
sr::load(vertex_shader_path, fragment_shader_path)
|
|
.expect("Failed to compile");
|
|
|
|
let vulkano_entry =
|
|
sr::parse(&shader)
|
|
.expect("failed to parse");
|
|
|
|
let x1: Arc<ShaderModule> = unsafe {
|
|
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.fragment)
|
|
}.unwrap();
|
|
|
|
let x2 = unsafe {
|
|
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.vertex)
|
|
}.unwrap();
|
|
|
|
let frag_entry_point: GraphicsEntryPoint<MySpecConstants, FragInput, FragOutput, FragLayout> = unsafe {
|
|
x1.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
|
vulkano_entry.frag_input,
|
|
vulkano_entry.frag_output,
|
|
vulkano_entry.frag_layout,
|
|
GraphicsShaderType::Fragment)
|
|
};
|
|
|
|
let vert_entry_point: GraphicsEntryPoint<MySpecConstants, VertInput, VertOutput, VertLayout> = unsafe {
|
|
x2.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
|
vulkano_entry.vert_input,
|
|
vulkano_entry.vert_output,
|
|
vulkano_entry.vert_layout,
|
|
GraphicsShaderType::Vertex)
|
|
};
|
|
|
|
// The next step is to create a *render pass*, which is an object that describes where the
|
|
// output of the graphics pipeline will go. It describes the layout of the images
|
|
// where the colors, depth and/or stencil information will be written.
|
|
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
|
|
self.device.clone(),
|
|
attachments: {
|
|
// `color` is a custom name we give to the first and only attachment.
|
|
color: {
|
|
// `load: Clear` means that we ask the GPU to clear the content of this
|
|
// attachment at the start of the drawing.
|
|
load: Clear,
|
|
// `store: Store` means that we ask the GPU to store the output of the draw
|
|
// in the actual image. We could also ask it to discard the result.
|
|
store: Store,
|
|
// `format: <ty>` indicates the type of the format of the image. This has to
|
|
// be one of the types of the `vulkano::format` module (or alternatively one
|
|
// of your structs that implements the `FormatDesc` trait). Here we use the
|
|
// same format as the swapchain.
|
|
format: self.swapchain.clone().unwrap().clone().format(),
|
|
// TODO:
|
|
samples: 1,
|
|
}
|
|
},
|
|
pass: {
|
|
// We use the attachment named `color` as the one and only color attachment.
|
|
color: [color],
|
|
// No depth-stencil attachment is indicated with empty brackets.
|
|
depth_stencil: {}
|
|
}
|
|
).unwrap());
|
|
|
|
self.render_pass = Some(render_pass);
|
|
|
|
let (texture, tex_future) = {
|
|
let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"),
|
|
ImageFormat::JPEG).unwrap().to_rgba();
|
|
let dimensions = image.dimensions();
|
|
let image_data = image.into_raw().clone();
|
|
|
|
ImmutableImage::from_iter(
|
|
image_data.iter().cloned(),
|
|
Dimensions::Dim2d { width: dimensions.0, height: dimensions.1 },
|
|
Format::R8G8B8A8Srgb,
|
|
self.queue.clone()
|
|
).unwrap()
|
|
};
|
|
|
|
let attachment_image = {
|
|
let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"),
|
|
ImageFormat::JPEG).unwrap().to_rgba();
|
|
let dimensions = image.dimensions();
|
|
let image_data = image.into_raw().clone();
|
|
|
|
let mut usage = ImageUsage::none();
|
|
usage.transfer_destination = true;
|
|
usage.storage = true;
|
|
|
|
AttachmentImage::with_usage(
|
|
self.device.clone(),
|
|
[dimensions.0, dimensions.1],
|
|
Format::R8G8B8A8Uint,
|
|
usage)
|
|
};
|
|
|
|
let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear,
|
|
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
|
|
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
|
|
|
|
|
|
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
|
|
// program, but much more specific.
|
|
let pipeline = GraphicsPipeline::start()
|
|
// We need to indicate the layout of the vertices.
|
|
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
|
|
// to the type of each vertex. But in this code it is automatically inferred.
|
|
.vertex_input_single_buffer::<tVertex>()
|
|
|
|
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
|
|
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
|
|
// the entry point.
|
|
.vertex_shader(vert_entry_point, MySpecConstants {
|
|
my_integer_constant: 0,
|
|
a_boolean: 0,
|
|
floating_point: 0.0,
|
|
})
|
|
// The content of the vertex buffer describes a list of triangles.
|
|
.triangle_fan()
|
|
// Use a resizable viewport set to draw over the entire window
|
|
.viewports_dynamic_scissors_irrelevant(1)
|
|
// See `vertex_shader`.
|
|
.fragment_shader(frag_entry_point, MySpecConstants {
|
|
my_integer_constant: 0,
|
|
a_boolean: 0,
|
|
floating_point: 0.0,
|
|
})
|
|
// We have to indicate which subpass of which render pass this pipeline is going to be used
|
|
// in. The pipeline will only be usable from this particular subpass.
|
|
.render_pass(Subpass::from(self.render_pass.clone().unwrap().clone(), 0).unwrap())
|
|
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
|
|
.build(self.device.clone())
|
|
.unwrap();
|
|
|
|
|
|
self.graphics_pipeline = Some(Arc::new(pipeline));
|
|
|
|
self.img_set = Some(Arc::new(PersistentDescriptorSet::start(self.graphics_pipeline.clone().unwrap().clone(), 0)
|
|
.add_sampled_image(texture.clone(), sampler.clone()).unwrap()
|
|
.add_image(attachment_image.clone().unwrap().clone()).unwrap()
|
|
.build().unwrap()));
|
|
|
|
self.graphics_image_buffer = Some(texture.clone());
|
|
self.graphics_iamge_swap_buffer = Some(attachment_image.clone().unwrap());
|
|
}
|
|
|
|
|
|
// On resizes we have to recreate the swapchain
|
|
pub fn recreate_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
|
|
let dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
|
|
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
|
|
[dimensions.0, dimensions.1]
|
|
} else {
|
|
return;
|
|
};
|
|
|
|
let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().recreate_with_dimension(dimensions) {
|
|
Ok(r) => r,
|
|
// This error tends to happen when the user is manually resizing the window.
|
|
// Simply restarting the loop is the easiest way to fix this issue.
|
|
Err(SwapchainCreationError::UnsupportedDimensions) => panic!("Uh oh"),
|
|
Err(err) => panic!("{:?}", err)
|
|
};
|
|
|
|
self.swapchain = Some(new_swapchain);
|
|
self.images = Some(new_images);
|
|
}
|
|
|
|
|
|
pub fn run(&mut self, surface: &'a Arc<Surface<Window>>, mut frame_future: Box<dyn GpuFuture>) -> Box<dyn GpuFuture> {
|
|
|
|
let mut framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
|
|
self.render_pass.clone().unwrap().clone(),
|
|
&mut self.dynamic_state);
|
|
|
|
let mut recreate_swapchain = false;
|
|
|
|
// The docs said to call this on each loop.
|
|
frame_future.cleanup_finished();
|
|
|
|
// Whenever the window resizes we need to recreate everything dependent on the window size.
|
|
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
|
|
if recreate_swapchain {
|
|
self.recreate_swapchain(surface);
|
|
framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
|
|
self.render_pass.clone().unwrap().clone(),
|
|
&mut self.dynamic_state);
|
|
recreate_swapchain = false;
|
|
}
|
|
|
|
|
|
// This function can block if no image is available. The parameter is an optional timeout
|
|
// after which the function call will return an error.
|
|
let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.swapchain.clone().unwrap().clone(), None) {
|
|
Ok(r) => r,
|
|
Err(AcquireError::OutOfDate) => {
|
|
recreate_swapchain = true;
|
|
//continue;
|
|
panic!("Weird thing");
|
|
}
|
|
Err(err) => panic!("{:?}", err)
|
|
};
|
|
|
|
// Specify the color to clear the framebuffer with i.e. blue
|
|
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
|
|
|
|
|
|
{
|
|
// In order to draw, we have to build a *command buffer*. The command buffer object holds
|
|
// the list of commands that are going to be executed.
|
|
//
|
|
// Building a command buffer is an expensive operation (usually a few hundred
|
|
// microseconds), but it is known to be a hot path in the driver and is expected to be
|
|
// optimized.
|
|
//
|
|
// Note that we have to pass a queue family when we create the command buffer. The command
|
|
// buffer will only be executable on that given queue family.
|
|
let mut v = Vec::new();
|
|
v.push(self.vertex_buffer.clone().unwrap().clone());
|
|
|
|
let command_buffer =
|
|
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family())
|
|
.unwrap()
|
|
|
|
.dispatch([self.xy.0, self.xy.1, 1],
|
|
self.compute_pipeline.clone().unwrap().clone(),
|
|
self.compute_set.clone().unwrap().clone(), ()).unwrap()
|
|
|
|
//.copy_buffer_to_image(self.img_buffers.get(0).unwrap().clone(), self.graphics_image_buffer.clone().unwrap()).unwrap()
|
|
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
|
|
.unwrap()
|
|
|
|
.draw(self.graphics_pipeline.clone().unwrap().clone(),
|
|
&self.dynamic_state, v,
|
|
self.img_set.clone().unwrap().clone(), ())
|
|
.unwrap()
|
|
|
|
.end_render_pass()
|
|
.unwrap()
|
|
|
|
.build().unwrap();
|
|
|
|
// Wait on the previous frame, then execute the command buffer and present the image
|
|
let future = frame_future.join(acquire_future)
|
|
.then_execute(self.queue.clone(), command_buffer).unwrap()
|
|
.then_swapchain_present(self.queue.clone(), self.swapchain.clone().unwrap().clone(), image_num)
|
|
.then_signal_fence_and_flush();
|
|
|
|
match future {
|
|
Ok(future) => {
|
|
(Box::new(future) as Box<_>)
|
|
}
|
|
Err(FlushError::OutOfDate) => {
|
|
recreate_swapchain = true;
|
|
(Box::new(sync::now(self.device.clone())) as Box<_>)
|
|
}
|
|
Err(e) => {
|
|
println!("{:?}", e);
|
|
(Box::new(sync::now(self.device.clone())) as Box<_>)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn load_buffers(&mut self, image_filename: String)
|
|
{
|
|
let project_root =
|
|
std::env::current_dir()
|
|
.expect("failed to get root directory");
|
|
|
|
let mut compute_path = project_root.clone();
|
|
compute_path.push(PathBuf::from("resources/images/"));
|
|
compute_path.push(PathBuf::from(image_filename));
|
|
|
|
let img = image::open(compute_path).expect("Couldn't find image");
|
|
|
|
self.xy = img.dimensions();
|
|
|
|
let data_length = self.xy.0 * self.xy.1 * 4;
|
|
let pixel_count = img.raw_pixels().len();
|
|
println!("Pixel count {}", pixel_count);
|
|
|
|
if pixel_count != data_length as usize {
|
|
println!("Creating apha channel...");
|
|
for i in img.raw_pixels().iter() {
|
|
if (self.image_buffer.len() + 1) % 4 == 0 {
|
|
self.image_buffer.push(255);
|
|
}
|
|
self.image_buffer.push(*i);
|
|
}
|
|
self.image_buffer.push(255);
|
|
} else {
|
|
self.image_buffer = img.raw_pixels();
|
|
}
|
|
|
|
println!("Buffer length {}", self.image_buffer.len());
|
|
println!("Size {:?}", self.xy);
|
|
|
|
println!("Allocating Buffers...");
|
|
|
|
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
|
|
let write_buffer = {
|
|
let mut buff = self.image_buffer.iter();
|
|
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
|
|
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap()
|
|
};
|
|
|
|
|
|
// Pull out the image data and place it in a buffer for the kernel to read from
|
|
let read_buffer = {
|
|
let mut buff = self.image_buffer.iter();
|
|
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
|
|
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap()
|
|
};
|
|
|
|
|
|
// A buffer to hold many i32 values to use as settings
|
|
let settings_buffer = {
|
|
let vec = vec![self.xy.0, self.xy.1];
|
|
let mut buff = vec.iter();
|
|
let data_iter =
|
|
(0..2).map(|n| *(buff.next().unwrap()));
|
|
CpuAccessibleBuffer::from_iter(self.device.clone(),
|
|
BufferUsage::all(),
|
|
data_iter).unwrap()
|
|
};
|
|
|
|
println!("Done");
|
|
|
|
// Create the data descriptor set for our previously created shader pipeline
|
|
let mut set =
|
|
PersistentDescriptorSet::start(self.compute_pipeline.clone().unwrap().clone(), 0)
|
|
.add_buffer(write_buffer.clone()).unwrap()
|
|
.add_buffer(read_buffer.clone()).unwrap()
|
|
.add_buffer(settings_buffer.clone()).unwrap();
|
|
|
|
self.compute_set = Some(Arc::new(set.build().unwrap()));
|
|
|
|
self.img_buffers.push(write_buffer);
|
|
self.img_buffers.push(read_buffer);
|
|
self.settings_buffer = Some(settings_buffer);
|
|
|
|
|
|
// We now create a buffer that will store the shape of our triangle.
|
|
let vertex_buffer = {
|
|
vulkano::impl_vertex!(tVertex, position);
|
|
|
|
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [
|
|
tVertex { position: [-1.0, -1.0 ] },
|
|
tVertex { position: [-1.0, 1.0 ] },
|
|
tVertex { position: [ 1.0, 1.0 ] },
|
|
tVertex { position: [ 1.0, -1.0 ] },
|
|
].iter().cloned()).unwrap()
|
|
};
|
|
|
|
self.vertex_buffer = Some(vertex_buffer);
|
|
}
|
|
|
|
// pub fn read_image(&self) -> Vec<u8> {
|
|
//
|
|
// // The buffer is sync'd so we can just read straight from the handle
|
|
// let mut data_buffer_content = self.img_buffers.get(0).unwrap().read().unwrap();
|
|
//
|
|
// println!("Reading output");
|
|
//
|
|
// let mut image_buffer = Vec::new();
|
|
//
|
|
// for y in 0..self.xy.1 {
|
|
// for x in 0..self.xy.0 {
|
|
//
|
|
// let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
|
|
// let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
|
|
// let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
|
|
// let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
|
|
//
|
|
// image_buffer.push(r);
|
|
// image_buffer.push(g);
|
|
// image_buffer.push(b);
|
|
// image_buffer.push(a);
|
|
// }
|
|
// }
|
|
//
|
|
// image_buffer
|
|
// }
|
|
|
|
// pub fn save_image(&self) {
|
|
// println!("Saving output");
|
|
//
|
|
// let img_data = self.read_image();
|
|
//
|
|
// let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| {
|
|
//
|
|
// let r = img_data[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
|
|
// let g = img_data[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
|
|
// let b = img_data[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
|
|
// let a = img_data[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
|
|
//
|
|
// image::Rgba([r, g, b, a])
|
|
// });
|
|
//
|
|
// img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs()));
|
|
// }
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|