You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Trac3r-rust/src/canvas.rs

493 lines
17 KiB

use crate::vertex_2d::{ColoredVertex2D, Vertex2D};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use std::collections::HashMap;
use vulkano::buffer::{BufferAccess, BufferUsage, ImmutableBuffer, CpuAccessibleBuffer};
use std::sync::Arc;
use vulkano::format::{ClearValue, Format};
use vulkano::framebuffer::{FramebufferAbstract, Framebuffer};
use vulkano::device::{Device, Queue};
use vulkano::instance::PhysicalDevice;
use vulkano::image::immutable::ImmutableImage;
use crate::util::shader_kernels::ShaderKernels;
use vulkano::image::{Dimensions, ImageAccess, ImageDimensions, SwapchainImage, ImageUsage, AttachmentImage};
use vulkano::sampler::{Sampler, SamplerAddressMode, MipmapMode, Filter};
use vulkano::descriptor::DescriptorSet;
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
use std::path::PathBuf;
use image::GenericImageView;
use crate::util::compute_image::ComputeImage;
use std::iter::FromIterator;
use vulkano::swapchain::Capabilities;
use winit::Window;
use vulkano::pipeline::viewport::Viewport;
// Canvas is the accumulator of Sprites for drawing
// Needs to know:
// textured?
// colored?
// vertices
/*
If it is textured. It needs to be rendered with the texture shader which requires a separate
graphics pipeline. Might as well have a new render pass as well.
So framebuffer is tied to the swapchains images as well as the renderpass
it appears that renderpass is tied to the individual shader
*/
// I want to be able to draw 2d sprites.
// These sprites might be textured or a single color
// All of the single colors will be grouped into one batch using colored vertices.
// The rest will be grouped by their texture and run individually
pub trait Vertex {
fn position(&self) -> (f32, f32) {
(0.0, 0.0)
}
fn color(&self) -> Option<(f32, f32, f32, f32)> {
Some((0., 0., 0., 0.))
}
}
impl Vertex for ColoredVertex2D {
fn position(&self) -> (f32, f32) {
(0.0, 0.0)
}
fn color(&self) -> Option<(f32, f32, f32, f32)> {
Some((0., 0., 0., 0.))
}
}
pub trait Drawable {
fn get_vertices(&self) -> Vec<(f32, f32)>;
fn get_color(&self) -> (f32, f32, f32, f32);
fn get_texture_handle(&self) -> Option<Arc<u32>>;
fn get_image_handle(&self) -> Option<Arc<u32>>;
}
// Need three types of shaders. Solid, Textured, Image
#[derive(PartialEq, Eq, Hash, Clone)]
pub enum ShaderType {
SOLID = 0,
TEXTURED = 1,
IMAGE = 2,
}
pub struct CanvasFrame {
colored_drawables: Vec<ColoredVertex2D>,
textured_drawables: HashMap<Arc<u32>, Vec<Vec<Vertex2D>>>,
image_drawables: HashMap<Arc<u32>, Vec<Vec<Vertex2D>>>,
}
impl CanvasFrame {
pub fn new() -> CanvasFrame {
CanvasFrame {
colored_drawables: vec![],
textured_drawables: Default::default(),
image_drawables: Default::default()
}
}
// Accumulates the drawables vertices and colors
pub fn draw(&mut self, drawable: &dyn Drawable) {
match drawable.get_texture_handle() {
Some(handle) => {
self.textured_drawables
.entry(handle.clone())
.or_insert(Vec::new())
.push(drawable.get_vertices().iter().map(|n|
Vertex2D {
position: [n.0, n.1],
}
).collect::<Vec<Vertex2D>>());
}
None => {
match drawable.get_image_handle() {
Some(handle) => {
self.image_drawables
.entry(handle.clone())
.or_insert(Vec::new())
.push(drawable.get_vertices().iter().map(|n|
Vertex2D {
position: [n.0, n.1],
}
).collect());
}
None => {
let colors = drawable.get_color();
self.colored_drawables.extend(
drawable.get_vertices().iter().map(|n|
ColoredVertex2D {
position: [n.0, n.1],
color: [colors.0, colors.1, colors.2, colors.3],
}
)
);
}
}
}
}
}
}
#[derive(Clone)]
pub struct Canvas {
shader_kernels: HashMap<ShaderType, ShaderKernels>,
texture_store: HashMap<String, Arc<ImmutableImage<Format>>>,
dynamic_state: DynamicState,
sampler: Arc<Sampler>,
// hold the image, texture, and shader buffers the same was as we do CompuState
image_buffers: Vec<std::sync::Arc<vulkano::image::attachment::AttachmentImage>>,
image_buffer_handles: Vec<Arc<u32>>,
texture_buffers: Vec<Arc<ImmutableImage<Format>>>,
texture_buffer_handles: Vec<Arc<u32>>,
shader_buffers: HashMap<ShaderType, ShaderKernels>,
shader_buffer_handles: Vec<Arc<u32>>,
// Hold onto the vertices we get from the Compu and Canvas Frames
// When the run comes around, push the vertices to the GPU
colored_drawables: Vec<ColoredVertex2D>,
colored_vertex_buffer: Vec<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
textured_drawables: HashMap<Arc<u32>, Vec<Vec<Vertex2D>>>,
textured_vertex_buffer: HashMap<Arc<u32>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
image_drawables: HashMap<Arc<u32>, Vec<Vec<Vertex2D>>>,
image_vertex_buffer: HashMap<Arc<u32>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
// Looks like we gotta hold onto the queue for managing textures
queue: Arc<Queue>,
device: Arc<Device>,
}
impl Canvas {
// This method is called once during initialization, then again whenever the window is resized
pub fn window_size_dependent_setup(&mut self, images: &[Arc<SwapchainImage<Window>>])
-> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
self.dynamic_state.viewports =
Some(vec![Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions.width() as f32, dimensions.height() as f32],
depth_range: 0.0..1.0,
}]);
images.iter().map(|image| {
Arc::new(
Framebuffer::start(self.shader_kernels.get(&ShaderType::SOLID).unwrap().render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
// needs to take in the texture list
pub fn new(queue: Arc<Queue>,
device: Arc<Device>,
physical: PhysicalDevice,
capabilities: Capabilities) -> Canvas {
let solid_color_kernel = String::from("color-passthrough");
let texture_kernel = String::from("simple_texture");
let shader_kernels : HashMap<ShaderType, ShaderKernels> = HashMap::from_iter(vec![
(ShaderType::SOLID, ShaderKernels::new(solid_color_kernel, capabilities.clone(), queue.clone(), physical.clone(), device.clone())),
(ShaderType::TEXTURED, ShaderKernels::new(texture_kernel, capabilities.clone(), queue.clone(), physical.clone(), device.clone()))
]);
Canvas {
shader_kernels: Default::default(),
texture_store: Default::default(),
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None },
sampler: Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(),
image_buffers: vec![],
image_buffer_handles: vec![],
texture_buffers: vec![],
texture_buffer_handles: vec![],
shader_buffers: Default::default(),
shader_buffer_handles: vec![],
colored_drawables: vec![],
colored_vertex_buffer: vec![],
textured_drawables: Default::default(),
textured_vertex_buffer: Default::default(),
image_drawables: Default::default(),
image_vertex_buffer: Default::default(),
queue: queue.clone(),
device: device.clone(),
}
}
pub fn create_image(&mut self, dimensions: (u32, u32), usage: ImageUsage) -> Arc<u32> {
self.image_buffers.push(
AttachmentImage::with_usage(
self.device.clone(),
[dimensions.0, dimensions.1],
Format::R8G8B8A8Uint,
usage).unwrap());
let id = Arc::new(self.image_buffers.len() as u32);
self.image_buffer_handles.push(id.clone());
id
}
pub fn get_image(&self, image_handle: Arc<u32>) -> std::sync::Arc<vulkano::image::attachment::AttachmentImage> {
self.image_buffers.get((*image_handle).clone() as usize).unwrap().clone()
}
// TODO Handle file not found gracefully
fn get_texture_from_file(&self, image_filename: String) -> Arc<ImmutableImage<Format>> {
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from(image_filename));
let img = image::open(compute_path).expect("Couldn't find image");
let xy = img.dimensions();
let data_length = xy.0 * xy.1 * 4;
let pixel_count = img.raw_pixels().len();
let mut image_buffer = Vec::new();
if pixel_count != data_length as usize {
println!("Creating apha channel...");
for i in img.raw_pixels().iter() {
if (image_buffer.len() + 1) % 4 == 0 {
image_buffer.push(255);
}
image_buffer.push(*i);
}
image_buffer.push(255);
} else {
image_buffer = img.raw_pixels();
}
let (texture, tex_future) = ImmutableImage::from_iter(
image_buffer.iter().cloned(),
Dimensions::Dim2d { width: xy.0, height: xy.1 },
Format::R8G8B8A8Srgb,
self.queue.clone(),
).unwrap();
texture
}
pub fn load_texture_from_filename(&mut self, filename: String) -> Arc<ImmutableImage<Format>> {
if self.texture_store.contains_key(&filename.clone()) {
println!("{} Already exists, not going to replace it.", filename.clone());
self.texture_store.get(&filename.clone()).unwrap().clone()
} else {
let texture = self.get_texture_from_file(filename.clone());
self.texture_store.insert(filename, texture.clone());
texture
}
}
pub fn load_texture(&mut self, filename: String) -> Option<Arc<u32>> {
let texture_buffer = self.get_texture_from_file(filename.clone());
self.texture_buffers.push(texture_buffer.clone());
let id = Arc::new(self.texture_buffers.len() as u32);
self.texture_buffer_handles.push(id.clone());
Some(id)
}
// After done using this, need to call allocated vertex buffers
pub fn draw(&mut self, canvas_frame: CanvasFrame) {
self.textured_drawables = canvas_frame.textured_drawables;
self.colored_drawables = canvas_frame.colored_drawables;
self.image_drawables = canvas_frame.image_drawables;
self.allocate_vertex_buffers(self.device.clone());
}
fn get_texture(&self, texture_id: String) -> Arc<ImmutableImage<Format>> {
if let Some(i) = self.texture_store.get(&texture_id) {
return i.clone();
} else {
panic!("{} : Texture not loaded", texture_id);
}
}
pub fn allocate_vertex_buffers(&mut self, device: Arc<Device>) {
self.colored_vertex_buffer.clear();
self.textured_vertex_buffer.clear();
self.image_vertex_buffer.clear();
//TODO should probably use cpu accessible buffer instead of recreating immutes each frame
// CpuAccessibleBuffer::from_iter(
// device.clone(),
// BufferUsage::vertex_buffer(),
// self.colored_drawables.iter().cloned(),
// ).unwrap().0;
self.colored_vertex_buffer.push(
ImmutableBuffer::from_iter(
self.colored_drawables.iter().cloned(),
BufferUsage::vertex_buffer(),
self.queue.clone(),
).unwrap().0
);
for (k, v) in self.textured_drawables.drain() {
self.textured_vertex_buffer.insert(
k.clone(),
ImmutableBuffer::from_iter(
v.iter().cloned(),
BufferUsage::vertex_buffer(),
self.queue.clone(),
).unwrap().0,
);
}
}
fn get_solid_color_descriptor_set(&self) -> Box<dyn DescriptorSet + Send + Sync> {
println!("{}", self.shader_kernels.get(&ShaderType::SOLID).unwrap().clone().get_pipeline().clone().num_sets());
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
self.shader_kernels.get(&ShaderType::SOLID).unwrap().clone().get_pipeline().clone(), 0,
).build().unwrap());
o
}
fn get_textured_descriptor_set(&self, texture_id: String)
-> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
self.shader_kernels.get(&ShaderType::TEXTURED).unwrap().clone().get_pipeline().clone(), 0,
)
.add_sampled_image(self.get_texture(texture_id), self.sampler.clone()).unwrap()
.build().unwrap());
o
}
// This is the image which is written to by the write compute buffer
// I suppose I could just have a general image set maker instead of compue... they are
// somewhat similar
fn get_compute_swap_descriptor_set(&mut self,
device: Arc<Device>,
compute_image: &ComputeImage) -> Box<dyn DescriptorSet + Send + Sync> {
let sampler = Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
self.shader_kernels.get(&ShaderType::IMAGE).clone().unwrap().clone().get_pipeline(), 0,
)
.add_image(compute_image.clone().get_swap_buffer().clone()).unwrap()
.build().unwrap());
o
}
pub fn draw_commands(&self,
mut command_buffer: AutoCommandBufferBuilder,
framebuffers: Vec<Arc<dyn FramebufferAbstract + Send + Sync>>,
image_num: usize) -> AutoCommandBufferBuilder {
// Specify the color to clear the framebuffer with i.e. blue
let clear_values = vec!(ClearValue::Float([0.0, 0.0, 1.0, 1.0]));
let mut command_buffer = command_buffer.begin_render_pass(
framebuffers[image_num].clone(), false, clear_values.clone(),
).unwrap();
for (shader_type, kernel) in self.shader_kernels.clone().iter() {
match shader_type {
ShaderType::SOLID => {
command_buffer = command_buffer.draw(
kernel.clone().get_pipeline().clone(),
&self.dynamic_state.clone(),
self.colored_vertex_buffer.clone(),
(), (),
).unwrap();
}
ShaderType::TEXTURED => {
// command_buffer = command_buffer.draw(
// kernel.clone().get_pipeline().clone(),
// &dynamic_state.clone(), self.textured_vertex_buffer.clone(),
// vec![self.get_textured_descriptor_set(String::from("funky-bird.jpg"))], ()
// ).unwrap();
}
ShaderType::IMAGE => {
}
}
}
command_buffer
.end_render_pass()
.unwrap()
}
}