You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Trac3r-rust/src/vkprocessor.rs

703 lines
31 KiB

use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc};
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract};
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use std::time::SystemTime;
use std::sync::Arc;
use std::ffi::CStr;
use std::path::PathBuf;
use shade_runner as sr;
use image::{DynamicImage, ImageBuffer};
use image::GenericImageView;
use vulkano::descriptor::pipeline_layout::PipelineLayout;
use image::GenericImage;
use shade_runner::{ComputeLayout, CompileError, FragLayout, FragInput, FragOutput, VertInput, VertOutput, VertLayout};
use vulkano::descriptor::descriptor_set::PersistentDescriptorSetBuf;
use shaderc::CompileOptions;
use vulkano::framebuffer::{Subpass, RenderPass, RenderPassAbstract, Framebuffer, FramebufferAbstract};
use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, GraphicsEntryPoint, SpecializationConstants, SpecializationMapEntry};
use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface, SwapchainCreationError, AcquireError};
use vulkano::swapchain::acquire_next_image;
use vulkano::image::swapchain::SwapchainImage;
use winit::{EventsLoop, WindowBuilder, Window, Event, WindowEvent};
use vulkano_win::VkSurfaceBuild;
use vulkano::pipeline::vertex::{SingleBufferDefinition, Vertex};
use vulkano::descriptor::PipelineLayoutAbstract;
use std::alloc::Layout;
use vulkano::pipeline::viewport::Viewport;
#[derive(Default, Debug, Clone)]
struct tVertex { position: [f32; 2] }
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
dynamic_state: &mut DynamicState,
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
let viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
depth_range: 0.0..1.0,
};
dynamic_state.viewports = Some(vec!(viewport));
images.iter().map(|image| {
Arc::new(
Framebuffer::start(render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
#[repr(C)]
struct MySpecConstants {
my_integer_constant: i32,
a_boolean: u32,
floating_point: f32,
}
unsafe impl SpecializationConstants for MySpecConstants {
fn descriptors() -> &'static [SpecializationMapEntry] {
static DESCRIPTORS: [SpecializationMapEntry; 3] = [
SpecializationMapEntry {
constant_id: 0,
offset: 0,
size: 4,
},
SpecializationMapEntry {
constant_id: 1,
offset: 4,
size: 4,
},
SpecializationMapEntry {
constant_id: 2,
offset: 8,
size: 4,
},
];
&DESCRIPTORS
}
}
pub struct VkProcessor<'a> {
pub instance: Arc<Instance>,
pub physical: PhysicalDevice<'a>,
pub pipeline: Option<Arc<GraphicsPipelineAbstract + Sync + Send>>,
pub compute_pipeline: Option<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>>,
pub device: Arc<Device>,
pub queues: QueuesIter,
pub queue: Arc<Queue>,
pub set: Option<Arc<PersistentDescriptorSet<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>, ((((), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u32]>>>)>>>,
pub image_buffer: Vec<u8>,
pub img_buffers: Vec<Arc<CpuAccessibleBuffer<[u8]>>>,
pub settings_buffer: Option<Arc<CpuAccessibleBuffer<[u32]>>>,
pub swapchain: Option<Arc<Swapchain<Window>>>,
pub images: Option<Vec<Arc<SwapchainImage<Window>>>>,
pub xy: (u32, u32),
pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>,
pub vertex_buffer: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>,
pub dynamic_state: DynamicState,
}
impl<'a> VkProcessor<'a> {
pub fn new(instance: &'a Arc<Instance>, surface: &'a Arc<Surface<Window>>) -> VkProcessor<'a> {
let physical = PhysicalDevice::enumerate(instance).next().unwrap();
let queue_family = physical.queue_families().find(|&q| {
// We take the first queue that supports drawing to our window.
q.supports_graphics() &&
surface.is_supported(q).unwrap_or(false) &&
q.supports_compute()
}).unwrap();
let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() };
let (device, mut queues) = Device::new(physical,
physical.supported_features(),
&device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
VkProcessor {
instance: instance.clone(),
physical: physical.clone(),
pipeline: Option::None,
compute_pipeline: Option::None,
device: device,
queue: queue,
queues: queues,
set: Option::None,
image_buffer: Vec::new(),
img_buffers: Vec::new(),
settings_buffer: Option::None,
swapchain: Option::None,
images: Option::None,
xy: (0, 0),
render_pass: Option::None,
vertex_buffer: Option::None,
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None },
}
}
pub fn compile_kernel(&mut self, filename: String) {
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/shaders/"));
compute_path.push(PathBuf::from(filename));
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
options.add_macro_definition("SETTING_POS_X", Some("0"));
options.add_macro_definition("SETTING_POS_Y", Some("1"));
options.add_macro_definition("SETTING_BUCKETS_START", Some("2"));
options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2"));
let shader =
sr::load_compute_with_options(compute_path, options)
.expect("Failed to compile");
let vulkano_entry =
sr::parse_compute(&shader)
.expect("failed to parse");
let x = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.compute)
}.unwrap();
let compute_pipeline = Arc::new({
unsafe {
ComputePipeline::new(self.device.clone(), &x.compute_entry_point(
CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.compute_layout), &(),
).unwrap()
}
});
self.compute_pipeline = Some(compute_pipeline);
}
pub fn compile_shaders(&mut self, filename: String, surface: &'a Arc<Surface<Window>>) {
// Before we can draw on the surface, we have to create what is called a swapchain. Creating
// a swapchain allocates the color buffers that will contain the image that will ultimately
// be visible on the screen. These images are returned alongside with the swapchain.
let (mut swapchain, images) = {
let capabilities = surface.capabilities(self.physical).unwrap();
let usage = capabilities.supported_usage_flags;
let alpha = capabilities.supported_composite_alpha.iter().next().unwrap();
// Choosing the internal format that the images will have.
let format = capabilities.supported_formats[0].0;
// Set the swapchains window dimensions
let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
// convert to physical pixels
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
// The window no longer exists so exit the application.
return;
};
Swapchain::new(self.device.clone(),
surface.clone(),
capabilities.min_image_count,
format,
initial_dimensions,
1, // Layers
usage,
&self.queue,
SurfaceTransform::Identity,
alpha,
PresentMode::Fifo, true, None).unwrap()
};
self.swapchain = Some(swapchain);
self.images = Some(images);
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut shader_path = project_root.clone();
shader_path.push(PathBuf::from("resources/shaders/"));
let mut vertex_shader_path = project_root.clone();
vertex_shader_path.push(PathBuf::from("resources/shaders/"));
vertex_shader_path.push(PathBuf::from(filename.clone() + ".vertex"));
let mut fragment_shader_path = project_root.clone();
fragment_shader_path.push(PathBuf::from("resources/shaders/"));
fragment_shader_path.push(PathBuf::from(filename.clone() + ".fragment"));
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
options.add_macro_definition("SETTING_POS_X", Some("0"));
options.add_macro_definition("SETTING_POS_Y", Some("1"));
options.add_macro_definition("SETTING_BUCKETS_START", Some("2"));
options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2"));
let shader =
sr::load(vertex_shader_path, fragment_shader_path)
.expect("Failed to compile");
let vulkano_entry =
sr::parse(&shader)
.expect("failed to parse");
let x1: Arc<ShaderModule> = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.fragment)
}.unwrap();
let x2 = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.vertex)
}.unwrap();
let frag_entry_point: GraphicsEntryPoint<MySpecConstants, FragInput, FragOutput, FragLayout> = unsafe {
x1.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.frag_input,
vulkano_entry.frag_output,
vulkano_entry.frag_layout,
GraphicsShaderType::Fragment)
};
let vert_entry_point: GraphicsEntryPoint<MySpecConstants, VertInput, VertOutput, VertLayout> = unsafe {
x2.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.vert_input,
vulkano_entry.vert_output,
vulkano_entry.vert_layout,
GraphicsShaderType::Vertex)
};
// The next step is to create a *render pass*, which is an object that describes where the
// output of the graphics pipeline will go. It describes the layout of the images
// where the colors, depth and/or stencil information will be written.
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
self.device.clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `load: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load: Clear,
// `store: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store: Store,
// `format: <ty>` indicates the type of the format of the image. This has to
// be one of the types of the `vulkano::format` module (or alternatively one
// of your structs that implements the `FormatDesc` trait). Here we use the
// same format as the swapchain.
format: self.swapchain.clone().unwrap().clone().format(),
// TODO:
samples: 1,
}
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {}
}
).unwrap());
self.render_pass = Some(render_pass);
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
let pipeline = GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
// .vertex_input_single_buffer()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(vert_entry_point, MySpecConstants {
my_integer_constant: 0,
a_boolean: 0,
floating_point: 0.0,
})
// The content of the vertex buffer describes a list of triangles.
.triangle_list()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(frag_entry_point, MySpecConstants {
my_integer_constant: 0,
a_boolean: 0,
floating_point: 0.0,
})
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(self.render_pass.clone().unwrap().clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(self.device.clone())
.unwrap();
self.pipeline = Option::Some(Arc::new(pipeline));
}
// On resizes we have to recreate the swapchain
pub fn recreate_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
let dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().recreate_with_dimension(dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => panic!("Uh oh"),
Err(err) => panic!("{:?}", err)
};
self.swapchain = Some(new_swapchain);
self.images = Some(new_images);
}
pub fn run_loop(&mut self, surface: &'a Arc<Surface<Window>>) {
let mut framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
self.render_pass.clone().unwrap().clone(),
&mut self.dynamic_state);
let mut recreate_swapchain = false;
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
//
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<dyn GpuFuture>;
// loop {
// It is important to call this function from time to time, otherwise resources will keep
// accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU has
// already processed, and frees the resources that are no longer needed.
// already processed, and frees the resources that are no longer needed.
previous_frame_end.cleanup_finished();
// Whenever the window resizes we need to recreate everything dependent on the window size.
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
if recreate_swapchain {
self.recreate_swapchain(surface);
framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
self.render_pass.clone().unwrap().clone(),
&mut self.dynamic_state);
recreate_swapchain = false;
}
// Before we can draw on the output, we have to *acquire* an image from the swapchain. If
// no image is available (which happens if you submit draw commands too quickly), then the
// function will block.
// This operation returns the index of the image that we are allowed to draw upon.
//
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.swapchain.clone().unwrap().clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
//continue;
panic!("Weird thing");
}
Err(err) => panic!("{:?}", err)
};
// Specify the color to clear the framebuffer with i.e. blue
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
{
// In order to draw, we have to build a *command buffer*. The command buffer object holds
// the list of commands that are going to be executed.
//
// Building a command buffer is an expensive operation (usually a few hundred
// microseconds), but it is known to be a hot path in the driver and is expected to be
// optimized.
//
// Note that we have to pass a queue family when we create the command buffer. The command
// buffer will only be executable on that given queue family.
let mut v = Vec::new();
v.push(self.vertex_buffer.clone().unwrap().clone());
let command_buffer =
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family())
.unwrap()
// .dispatch([self.xy.0, self.xy.1, 1],
// self.compute_pipeline.clone(),
// self.set.clone(), ()).unwrap()
// Before we can draw, we have to *enter a render pass*. There are two methods to do
// this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is
// not covered here.
//
// The third parameter builds the list of values to clear the attachments with. The API
// is similar to the list of attachments when building the framebuffers, except that
// only the attachments that use `load: Clear` appear in the list.
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
.unwrap()
// We are now inside the first subpass of the render pass. We add a draw command.
//
// The last two parameters contain the list of resources to pass to the shaders.
// Since we used an `EmptyPipeline` object, the objects have to be `()`.
.draw(self.pipeline.clone().unwrap().clone(), &self.dynamic_state, v, (), ())
.unwrap()
// We leave the render pass by calling `draw_end`. Note that if we had multiple
// subpasses we could have called `next_inline` (or `next_secondary`) to jump to the
// next subpass.
.end_render_pass()
.unwrap()
// Finish building the command buffer by calling `build`.
.build().unwrap();
let future = previous_frame_end.join(acquire_future)
.then_execute(self.queue.clone(), command_buffer).unwrap()
// The color output is now expected to contain our triangle. But in order to show it on
// the screen, we have to *present* the image by calling `present`.
//
// This function does not actually present the image immediately. Instead it submits a
// present command at the end of the queue. This means that it will only be presented once
// the GPU has finished executing the command buffer that draws the triangle.
.then_swapchain_present(self.queue.clone(), self.swapchain.clone().unwrap().clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Box::new(future) as Box<_>;
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<_>;
}
Err(e) => {
println!("{:?}", e);
previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<_>;
}
}
}
// Note that in more complex programs it is likely that one of `acquire_next_image`,
// `command_buffer::submit`, or `present` will block for some time. This happens when the
// GPU's queue is full and the driver has to wait until the GPU finished some work.
//
// Unfortunately the Vulkan API doesn't provide any way to not wait or to detect when a
// wait would happen. Blocking may be the desired behavior, but if you don't want to
// block you should spawn a separate thread dedicated to submissions.
// Handling the window events in order to close the program when the user wants to close
// it.
let mut done = true;
// events_loop.poll_events(|ev| {
// match ev {
// Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
// Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
// _ => ()
// }
// });
if done { return; }
//}
}
pub fn load_buffers(&mut self, image_filename: String)
{
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from(image_filename));
let img = image::open(compute_path).expect("Couldn't find image");
self.xy = img.dimensions();
let data_length = self.xy.0 * self.xy.1 * 4;
let pixel_count = img.raw_pixels().len();
println!("Pixel count {}", pixel_count);
if pixel_count != data_length as usize {
println!("Creating apha channel...");
for i in img.raw_pixels().iter() {
if (self.image_buffer.len() + 1) % 4 == 0 {
self.image_buffer.push(255);
}
self.image_buffer.push(*i);
}
self.image_buffer.push(255);
} else {
self.image_buffer = img.raw_pixels();
}
println!("Buffer length {}", self.image_buffer.len());
println!("Size {:?}", self.xy);
println!("Allocating Buffers...");
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
let write_buffer = {
let mut buff = self.image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// Pull out the image data and place it in a buffer for the kernel to read from
let read_buffer = {
let mut buff = self.image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// A buffer to hold many i32 values to use as settings
let settings_buffer = {
let vec = vec![self.xy.0, self.xy.1];
let mut buff = vec.iter();
let data_iter =
(0..2).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(self.device.clone(),
BufferUsage::all(),
data_iter).unwrap()
};
println!("Done");
// Create the data descriptor set for our previously created shader pipeline
let mut set =
PersistentDescriptorSet::start(self.compute_pipeline.clone().unwrap().clone(), 0)
.add_buffer(write_buffer.clone()).unwrap()
.add_buffer(read_buffer.clone()).unwrap()
.add_buffer(settings_buffer.clone()).unwrap();
self.set = Some(Arc::new(set.build().unwrap()));
self.img_buffers.push(write_buffer);
self.img_buffers.push(read_buffer);
self.settings_buffer = Some(settings_buffer);
// We now create a buffer that will store the shape of our triangle.
let vertex_buffer = {
vulkano::impl_vertex!(tVertex, position);
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [
tVertex { position: [-0.5, -0.25] },
tVertex { position: [0.0, 0.5] },
tVertex { position: [0.25, -0.1] }
].iter().cloned()).unwrap()
};
self.vertex_buffer = Some(vertex_buffer);
}
// pub fn run_kernel(&mut self) {
//
// println!("Running Kernel...");
//
// // The command buffer I think pretty much serves to define what runs where for how many times
// let command_buffer =
// AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(),self.queue.family()).unwrap()
// .dispatch([self.xy.0, self.xy.1, 1],
// self.compute_pipeline.clone().unwrap().clone(),
// self.set.clone().unwrap().clone(), ()).unwrap()
// .build().unwrap();
//
// // Create a future for running the command buffer and then just fence it
// let future = sync::now(self.device.clone())
// .then_execute(self.queue.clone(), command_buffer).unwrap()
// .then_signal_fence_and_flush().unwrap();
//
// // I think this is redundant and returns immediately
// future.wait(None).unwrap();
// println!("Done running kernel");
// }
// pub fn read_image(&self) -> Vec<u8> {
//
// // The buffer is sync'd so we can just read straight from the handle
// let mut data_buffer_content = self.img_buffers.get(0).unwrap().read().unwrap();
//
// println!("Reading output");
//
// let mut image_buffer = Vec::new();
//
// for y in 0..self.xy.1 {
// for x in 0..self.xy.0 {
//
// let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
// let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
// let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
// let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
//
// image_buffer.push(r);
// image_buffer.push(g);
// image_buffer.push(b);
// image_buffer.push(a);
// }
// }
//
// image_buffer
// }
// pub fn save_image(&self) {
// println!("Saving output");
//
// let img_data = self.read_image();
//
// let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| {
//
// let r = img_data[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
// let g = img_data[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
// let b = img_data[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
// let a = img_data[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
//
// image::Rgba([r, g, b, a])
// });
//
// img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs()));
// }
}