You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Trac3r-rust/src/vkprocessor.rs

574 lines
22 KiB

use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc, PersistentDescriptorSetBuilder, FixedSizeDescriptorSetsPool, StdDescriptorPool};
use vulkano::descriptor::descriptor_set::collection::DescriptorSetsCollection;
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract};
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use std::time::SystemTime;
use std::sync::Arc;
use std::ffi::CStr;
use std::path::PathBuf;
use shade_runner as sr;
use image::{DynamicImage, ImageBuffer};
use image::GenericImageView;
use vulkano::descriptor::pipeline_layout::PipelineLayout;
use image::GenericImage;
use shade_runner::{ComputeLayout, CompileError, FragLayout, FragInput, FragOutput, VertInput, VertOutput, VertLayout, CompiledShaders, Entry};
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSetBuf, PersistentDescriptorSetImg, PersistentDescriptorSetSampler};
use shaderc::CompileOptions;
use vulkano::framebuffer::{Subpass, RenderPass, RenderPassAbstract, Framebuffer, FramebufferAbstract};
use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, GraphicsEntryPoint, SpecializationConstants, SpecializationMapEntry};
use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface, SwapchainCreationError, AcquireError};
use vulkano::swapchain::acquire_next_image;
use vulkano::image::swapchain::SwapchainImage;
use winit::{EventsLoop, WindowBuilder, Window, Event, WindowEvent};
use vulkano_win::VkSurfaceBuild;
use vulkano::pipeline::vertex::{SingleBufferDefinition, Vertex};
use vulkano::descriptor::{PipelineLayoutAbstract, DescriptorSet};
use std::alloc::Layout;
use vulkano::pipeline::viewport::Viewport;
use image::ImageFormat;
use vulkano::image::immutable::ImmutableImage;
use vulkano::image::attachment::AttachmentImage;
use vulkano::image::{Dimensions, ImageUsage, ImageAccess, ImageDimensions};
use vulkano::format::Format;
use vulkano::sampler::{Sampler, Filter, MipmapMode, SamplerAddressMode};
use image::flat::NormalForm::ColumnMajorPacked;
mod compute_kernel;
use crate::vkprocessor::compute_kernel::ComputeKernel;
mod shader_kernels;
use crate::vkprocessor::shader_kernels::ShaderKernels;
use vulkano::descriptor::descriptor::DescriptorDesc;
//
//#[derive(Clone)]
//struct ImageBuffers {
// pub image_buffers : Vec<Box<ImageAccess + Send + Sync>>,
//}
//
//impl ImageBuffers {
//
// pub fn new() -> ImageBuffers {
// ImageBuffers {
// image_buffers: vec![]
// }
// }
// pub fn add_image(self) -> Self {
//
// self
// }
//}
//
//unsafe impl DescriptorSetsCollection for ImageBuffers {
// fn into_vec(self) -> Vec<Box<DescriptorSet>> {
// unimplemented!()
// }
//
// fn num_bindings_in_set(&self, set: usize) -> Option<usize> {
// unimplemented!()
// }
//
// fn descriptor(&self, set: usize, binding: usize) -> Option<DescriptorDesc> {
// unimplemented!()
// }
//}
#[derive(Default, Debug, Clone)]
struct tVertex { position: [f32; 2] }
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
dynamic_state: &mut DynamicState,
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
let viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions.width() as f32, dimensions.height() as f32],
depth_range: 0.0..1.0,
};
dynamic_state.viewports = Some(vec!(viewport));
images.iter().map(|image| {
Arc::new(
Framebuffer::start(render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
#[repr(C)]
#[derive(Default, Debug, Clone)]
struct SimpleSpecializationConstants {
first_constant: i32,
second_constant: u32,
third_constant: f32,
}
unsafe impl SpecializationConstants for SimpleSpecializationConstants {
fn descriptors() -> &'static [SpecializationMapEntry] {
static DESCRIPTORS: [SpecializationMapEntry; 3] = [
SpecializationMapEntry {
constant_id: 0,
offset: 0,
size: 4,
},
SpecializationMapEntry {
constant_id: 1,
offset: 4,
size: 4,
},
SpecializationMapEntry {
constant_id: 2,
offset: 8,
size: 4,
},
];
&DESCRIPTORS
}
}
pub struct VkProcessor<'a> {
pub shader_kernels: Option<ShaderKernels>,
pub compute_kernel: Option<ComputeKernel>,
pub vertex_shader_path: PathBuf,
pub fragment_shader_path: PathBuf,
pub instance: Arc<Instance>,
pub physical: PhysicalDevice<'a>,
pub graphics_pipeline: Option<Arc<GraphicsPipelineAbstract + Sync + Send>>,
pub compute_pipeline: Option<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>>,
pub device: Arc<Device>,
pub queues: QueuesIter,
pub queue: Arc<Queue>,
pub compute_set: Option<Arc<PersistentDescriptorSet<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>, ((((), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u32]>>>)>>>,
pub img_set: Option<Arc<PersistentDescriptorSet<Arc<dyn GraphicsPipelineAbstract + Send + Sync>, ((((), PersistentDescriptorSetImg<Arc<ImmutableImage<Format>>>), PersistentDescriptorSetSampler), PersistentDescriptorSetImg<Arc<AttachmentImage>>)>>>,
pub graphics_image_buffer: Option<Arc<ImmutableImage<Format>>>,
pub image_buffer: Vec<u8>,
pub compute_image_buffers: Vec<Arc<CpuAccessibleBuffer<[u8]>>>,
pub settings_buffer: Option<Arc<CpuAccessibleBuffer<[u32]>>>,
// pub swapchain: Option<Arc<Swapchain<Window>>>,
// pub images: Option<Vec<Arc<SwapchainImage<Window>>>>,
pub xy: (u32, u32),
pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>,
pub vertex_buffer: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>,
pub dynamic_state: DynamicState,
pub graphics_image_swap_buffer: Option<std::sync::Arc<vulkano::image::attachment::AttachmentImage>>,
pub image_buffer_store : Vec<Box<ImageAccess + Send + Sync>>,
// pub image_buffers_obj : ImageBuffers,
}
impl<'a> VkProcessor<'a> {
pub fn new(instance: &'a Arc<Instance>, surface: &'a Arc<Surface<Window>>) -> VkProcessor<'a> {
let physical = PhysicalDevice::enumerate(instance).next().unwrap();
let queue_family = physical.queue_families().find(|&q| {
// We take the first queue that supports drawing to our window.
q.supports_graphics() &&
surface.is_supported(q).unwrap_or(false) &&
q.supports_compute()
}).unwrap();
let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() };
let (device, mut queues) = Device::new(physical,
physical.supported_features(),
&device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
VkProcessor {
shader_kernels: Option::None,
compute_kernel: Option::None,
vertex_shader_path: Default::default(),
fragment_shader_path: Default::default(),
instance: instance.clone(),
physical: physical.clone(),
graphics_pipeline: Option::None,
compute_pipeline: Option::None,
device: device.clone(),
queue: queue,
queues: queues,
compute_set: Option::None,
img_set: Option::None,
graphics_image_buffer: None,
image_buffer: Vec::new(),
compute_image_buffers: Vec::new(),
settings_buffer: Option::None,
xy: (0, 0),
render_pass: Option::None,
vertex_buffer: Option::None,
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None },
graphics_image_swap_buffer: None,
image_buffer_store: vec![],
//image_buffers_obj: ImageBuffers::new(),
}
}
pub fn compile_kernel(&mut self, filename: String) {
self.compute_kernel = Some(ComputeKernel::new(filename, self.device.clone()));
self.compute_pipeline = Some(self.compute_kernel.clone().unwrap().get_pipeline());
}
pub fn compile_shaders(&mut self, filename: String, surface: &'a Arc<Surface<Window>>) {
self.shader_kernels = Some(
ShaderKernels::new(filename.clone(),
surface, self.queue.clone(),
self.physical,
self.device.clone())
);
}
// On resizes we have to recreate the swapchain
pub fn recreate_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
self.shader_kernels = Some(self.shader_kernels.take().unwrap().recreate_swapchain(surface));
}
pub fn load_buffers(&mut self, image_filename: String)
{
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from(image_filename));
let img = image::open(compute_path).expect("Couldn't find image");
self.xy = img.dimensions();
let data_length = self.xy.0 * self.xy.1 * 4;
let pixel_count = img.raw_pixels().len();
println!("Pixel count {}", pixel_count);
if pixel_count != data_length as usize {
println!("Creating apha channel...");
for i in img.raw_pixels().iter() {
if (self.image_buffer.len() + 1) % 4 == 0 {
self.image_buffer.push(255);
}
self.image_buffer.push(*i);
}
self.image_buffer.push(255);
} else {
self.image_buffer = img.raw_pixels();
}
println!("Buffer length {}", self.image_buffer.len());
println!("Size {:?}", self.xy);
println!("Allocating Buffers...");
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
let write_buffer = {
let mut buff = self.image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// Pull out the image data and place it in a buffer for the kernel to read from
let read_buffer = {
let mut buff = self.image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// A buffer to hold many i32 values to use as settings
let settings_buffer = {
let vec = vec![self.xy.0, self.xy.1];
let mut buff = vec.iter();
let data_iter =
(0..2).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(self.device.clone(),
BufferUsage::all(),
data_iter).unwrap()
};
println!("Done");
// Create the data descriptor set for our previously created shader pipeline
let mut set =
PersistentDescriptorSet::start(self.compute_pipeline.clone().unwrap().clone(), 0)
.add_buffer(write_buffer.clone()).unwrap()
.add_buffer(read_buffer.clone()).unwrap()
.add_buffer(settings_buffer.clone()).unwrap();
self.compute_set = Some(Arc::new(set.build().unwrap()));
self.compute_image_buffers.push(write_buffer);
self.compute_image_buffers.push(read_buffer);
self.settings_buffer = Some(settings_buffer);
let vertex_buffer = {
vulkano::impl_vertex!(tVertex, position);
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [
tVertex { position: [-1.0, -1.0 ] },
tVertex { position: [-1.0, 1.0 ] },
tVertex { position: [ 1.0, 1.0 ] },
tVertex { position: [ 1.0, -1.0 ] },
].iter().cloned()).unwrap()
};
self.vertex_buffer = Some(vertex_buffer);
let (texture, tex_future) = {
ImmutableImage::from_iter(
self.image_buffer.iter().cloned(),
Dimensions::Dim2d { width: self.xy.0, height: self.xy.1 },
Format::R8G8B8A8Srgb,
self.queue.clone()
).unwrap()
};
let compute_transfer_image = {
let mut usage = ImageUsage::none();
usage.transfer_destination = true;
usage.storage = true;
AttachmentImage::with_usage(
self.device.clone(),
[self.xy.0, self.xy.1],
Format::R8G8B8A8Uint,
usage)
};
self.image_buffer_store.push(Box::new(texture.clone()));
self.graphics_image_buffer = Some(texture.clone());
self.graphics_image_swap_buffer = Some(compute_transfer_image.clone().unwrap());
}
// The image set is the containing object for all texture and image hooks.
// todo, make this pull from the image_buffer_store
fn get_image_set(&mut self) -> Box<DescriptorSet + Send + Sync> {
let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear,
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
let mut descriptor_sets = PersistentDescriptorSet::start(
self.shader_kernels.clone().unwrap().graphics_pipeline.clone().unwrap().clone(), 0
);
let descriptor_sets = descriptor_sets.add_sampled_image(self.graphics_image_buffer.clone().unwrap().clone(), sampler.clone()).unwrap();
let o : Box<DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
self.shader_kernels.clone().unwrap().graphics_pipeline.clone().unwrap().clone(), 0
)
.add_sampled_image(self.graphics_image_buffer.clone().unwrap().clone(), sampler.clone()).unwrap()
.add_image(self.graphics_image_swap_buffer.clone().unwrap().clone()).unwrap()
.build().unwrap());
o
}
pub fn run(&mut self, surface: &'a Arc<Surface<Window>>, mut frame_future: Box<dyn GpuFuture>) -> Box<dyn GpuFuture> {
let mut framebuffers = window_size_dependent_setup(&self.shader_kernels.clone().unwrap().swapchain_images.clone(),
self.shader_kernels.clone().unwrap().render_pass.clone(),
&mut self.dynamic_state);
let mut recreate_swapchain = false;
// The docs said to call this on each loop.
frame_future.cleanup_finished();
// Whenever the window resizes we need to recreate everything dependent on the window size.
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
if recreate_swapchain {
self.shader_kernels = Some(self.shader_kernels.clone().unwrap().recreate_swapchain(surface));
framebuffers = window_size_dependent_setup(&self.shader_kernels.clone().unwrap().swapchain_images.clone(),
self.render_pass.clone().unwrap().clone(),
&mut self.dynamic_state);
recreate_swapchain = false;
}
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.shader_kernels.clone().unwrap().swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
//continue;
panic!("Weird thing");
}
Err(err) => panic!("{:?}", err)
};
// Specify the color to clear the framebuffer with i.e. blue
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
{
// In order to draw, we have to build a *command buffer*. The command buffer object holds
// the list of commands that are going to be executed.
//
// Building a command buffer is an expensive operation (usually a few hundred
// microseconds), but it is known to be a hot path in the driver and is expected to be
// optimized.
//
// Note that we have to pass a queue family when we create the command buffer. The command
// buffer will only be executable on that given queue family.
let mut v = Vec::new();
v.push(self.vertex_buffer.clone().unwrap().clone());
let command_buffer =
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family())
.unwrap()
.dispatch([self.xy.0, self.xy.1, 1],
self.compute_pipeline.clone().unwrap().clone(),
self.compute_set.clone().unwrap().clone(), ()).unwrap()
.copy_buffer_to_image(self.compute_image_buffers.get(0).unwrap().clone(),
self.graphics_image_swap_buffer.clone().unwrap()).unwrap()
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
.unwrap()
.draw(self.shader_kernels.clone().unwrap().graphics_pipeline.clone().unwrap().clone(),
&self.dynamic_state.clone(), v,
vec![self.get_image_set()], ())
.unwrap()
.end_render_pass()
.unwrap()
.build().unwrap();
let mut data_buffer_content = self.compute_image_buffers.get(0).unwrap().read().unwrap();
let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| {
let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
image::Rgba([r, g, b, a])
});
// Wait on the previous frame, then execute the command buffer and present the image
let future = frame_future.join(acquire_future)
.then_execute(self.queue.clone(), command_buffer).unwrap()
.then_swapchain_present(self.queue.clone(), self.shader_kernels.clone().unwrap().swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
(Box::new(future) as Box<_>)
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
(Box::new(sync::now(self.device.clone())) as Box<_>)
}
Err(e) => {
println!("{:?}", e);
(Box::new(sync::now(self.device.clone())) as Box<_>)
}
}
}
}
// pub fn read_image(&self) -> Vec<u8> {
//
// // The buffer is sync'd so we can just read straight from the handle
// let mut data_buffer_content = self.img_buffers.get(0).unwrap().read().unwrap();
//
// println!("Reading output");
//
// let mut image_buffer = Vec::new();
//
// for y in 0..self.xy.1 {
// for x in 0..self.xy.0 {
//
// let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
// let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
// let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
// let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
//
// image_buffer.push(r);
// image_buffer.push(g);
// image_buffer.push(b);
// image_buffer.push(a);
// }
// }
//
// image_buffer
// }
// pub fn save_image(&self) {
// println!("Saving output");
//
// let img_data = self.read_image();
//
// let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| {
//
// let r = img_data[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
// let g = img_data[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
// let b = img_data[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
// let a = img_data[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
//
// image::Rgba([r, g, b, a])
// });
//
// img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs()));
// }
}