You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

304 lines
9.4 KiB

/*
|| @author Brett Hagman <bhagman@wiring.org.co>
|| @contribution Paul Stoffregen (paul at pjrc dot com)
|| @url http://wiring.org.co/
|| @url http://roguerobotics.com/
||
|| @description
|| | A Software PWM Library
|| |
|| | Written by Brett Hagman
|| | http://www.roguerobotics.com/
|| | bhagman@roguerobotics.com, bhagman@wiring.org.co
|| |
|| | A Wiring (and Arduino) Library, for Atmel AVR8 bit series microcontrollers,
|| | to produce PWM signals on any arbitrary pin.
|| |
|| | It was originally designed for controlling the brightness of LEDs, but
|| | could be adapted to control servos and other low frequency PWM controlled
|| | devices as well.
|| |
|| | It uses a single hardware timer (Timer 2) on the Atmel microcontroller to
|| | generate up to 20 PWM channels (your mileage may vary).
|| |
|| #
||
|| @license Please see the accompanying LICENSE.txt file for this project.
||
|| @notes
|| | Minor modification by Paul Stoffregen to support different timers.
|| |
|| #
||
|| @name Software PWM Library
|| @type Library
|| @target Atmel AVR 8 Bit
||
|| @version 1.0.1
||
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include "SoftPWM.h"
#include "SoftPWM_timer.h"
#if defined(WIRING)
#include <wiring_private.h>
#elif ARDUINO >= 100
#include <Arduino.h>
#else
#include <Arduino.h>
#endif
#if F_CPU
#define SOFTPWM_FREQ 60UL
#define SOFTPWM_OCR (F_CPU/(8UL*256UL*SOFTPWM_FREQ))
#else
// 130 == 60 Hz (on 16 MHz part)
#define SOFTPWM_OCR 130
#endif
volatile uint8_t _isr_softcount = 0xff;
uint8_t _softpwm_defaultPolarity = SOFTPWM_NORMAL;
typedef struct {
// hardware I/O port and pin for this channel
int8_t pin;
uint8_t polarity;
volatile uint8_t *outport;
uint8_t pinmask;
uint8_t pwmvalue;
uint8_t checkval;
uint8_t fadeuprate;
uint8_t fadedownrate;
} softPWMChannel;
softPWMChannel _softpwm_channels[SOFTPWM_MAXCHANNELS];
// Here is the meat and gravy
#ifdef WIRING
void SoftPWM_Timer_Interrupt(void)
#else
ISR(TIMER1_COMPA_vect)
#endif
{
uint8_t i;
int16_t newvalue;
int16_t direction;
if (++_isr_softcount == 0)
{
// set all channels high - let's start again
// and accept new checkvals
for (i = 0; i < SOFTPWM_MAXCHANNELS; i++) {
if (_softpwm_channels[i].fadeuprate > 0 || _softpwm_channels[i].fadedownrate > 0) {
// we want to fade to the new value
direction = _softpwm_channels[i].pwmvalue - _softpwm_channels[i].checkval;
// we will default to jumping to the new value
newvalue = _softpwm_channels[i].pwmvalue;
if (direction > 0 && _softpwm_channels[i].fadeuprate > 0) {
newvalue = _softpwm_channels[i].checkval + _softpwm_channels[i].fadeuprate;
if (newvalue > _softpwm_channels[i].pwmvalue)
newvalue = _softpwm_channels[i].pwmvalue;
} else if (direction < 0 && _softpwm_channels[i].fadedownrate > 0) {
newvalue = _softpwm_channels[i].checkval - _softpwm_channels[i].fadedownrate;
if (newvalue < _softpwm_channels[i].pwmvalue)
newvalue = _softpwm_channels[i].pwmvalue;
}
_softpwm_channels[i].checkval = newvalue;
} else // just set the channel to the new value
_softpwm_channels[i].checkval = _softpwm_channels[i].pwmvalue;
// now set the pin high (if not 0)
if (_softpwm_channels[i].checkval > 0) // don't set if checkval == 0
{
if (_softpwm_channels[i].polarity == SOFTPWM_NORMAL)
*_softpwm_channels[i].outport |= _softpwm_channels[i].pinmask;
else
*_softpwm_channels[i].outport &= ~(_softpwm_channels[i].pinmask);
}
}
}
for (i = 0; i < SOFTPWM_MAXCHANNELS; i++)
{
if (_softpwm_channels[i].pin >= 0) // if it's a valid pin
{
if (_softpwm_channels[i].checkval == _isr_softcount) // if we have hit the width
{
// turn off the channel
if (_softpwm_channels[i].polarity == SOFTPWM_NORMAL)
*_softpwm_channels[i].outport &= ~(_softpwm_channels[i].pinmask);
else
*_softpwm_channels[i].outport |= _softpwm_channels[i].pinmask;
}
}
}
}
void SoftPWMBegin(uint8_t defaultPolarity) {
// We can tweak the number of PWM period by changing the prescalar
// and the OCR - we'll default to ck/8 (CS21 set) and OCR=128.
// This gives 1024 cycles between interrupts. And the ISR consumes ~200 cycles, so
// we are looking at about 20 - 30% of CPU time spent in the ISR.
// At these settings on a 16 MHz part, we will get a PWM period of
// approximately 60Hz (~16ms).
uint8_t i;
//#ifdef WIRING
// Timer2.setMode(0b010); // CTC
// Timer2.setClockSource(CLOCK_PRESCALE_8);
// Timer2.setOCR(CHANNEL_A, SOFTPWM_OCR);
// Timer2.attachInterrupt(INTERRUPT_COMPARE_MATCH_A, SoftPWM_Timer_Interrupt);
//#else
// SOFTPWM_TIMER_INIT(SOFTPWM_OCR);
//#endif
cli(); //Disable interrupts while setting registers
TCCR1A = 0; // Make sure it is zero
TCCR1B = 0; // Make sure it is zero
//TCCR1B = (1 << WGM21); // Configure for CTC mode (Set it; don't OR stuff into it)
//TCCR1B |= (1 << CS21); // Prescaler @ 1024
TIMSK1 = (1 << OCIE1A); // Enable interrupt
OCR1A = SOFTPWM_OCR; // compare value = 1 sec (16MHz AVR)
TCCR1B = (1 << CS21); /* start timer (ck/8 prescalar) */ \
TCCR1A = (1 << WGM21); /* CTC mode */ \
sei();
for (i = 0; i < SOFTPWM_MAXCHANNELS; i++) {
_softpwm_channels[i].pin = -1;
_softpwm_channels[i].polarity = SOFTPWM_NORMAL;
_softpwm_channels[i].outport = 0;
_softpwm_channels[i].fadeuprate = 0;
_softpwm_channels[i].fadedownrate = 0;
}
_softpwm_defaultPolarity = defaultPolarity;
}
void SoftPWMSetPolarity(int8_t pin, uint8_t polarity) {
uint8_t i;
if (polarity != SOFTPWM_NORMAL)
polarity = SOFTPWM_INVERTED;
for (i = 0; i < SOFTPWM_MAXCHANNELS; i++) {
if ((pin < 0 && _softpwm_channels[i].pin >= 0) || // ALL pins
(pin >= 0 && _softpwm_channels[i].pin == pin)) // individual pin
{
_softpwm_channels[i].polarity = polarity;
}
}
}
void SoftPWMSetPercent(int8_t pin, uint8_t percent, uint8_t hardset) {
SoftPWMSet(pin, ((uint16_t) percent * 255) / 100, hardset);
}
void SoftPWMSet(int8_t pin, uint8_t value, uint8_t hardset) {
int8_t firstfree = -1; // first free index
uint8_t i;
if (hardset) {
SOFTPWM_TIMER_SET(0);
_isr_softcount = 0xff;
}
// If the pin isn't already set, add it
for (i = 0; i < SOFTPWM_MAXCHANNELS; i++) {
if ((pin < 0 && _softpwm_channels[i].pin >= 0) || // ALL pins
(pin >= 0 && _softpwm_channels[i].pin == pin)) // individual pin
{
// set the pin (and exit, if individual pin)
_softpwm_channels[i].pwmvalue = value;
if (pin >= 0) // we've set the individual pin
return;
}
// get the first free pin if available
if (firstfree < 0 && _softpwm_channels[i].pin < 0)
firstfree = i;
}
if (pin >= 0 && firstfree >= 0) {
// we have a free pin we can use
_softpwm_channels[firstfree].pin = pin;
_softpwm_channels[firstfree].polarity = _softpwm_defaultPolarity;
_softpwm_channels[firstfree].outport = portOutputRegister(digitalPinToPort(pin));
_softpwm_channels[firstfree].pinmask = digitalPinToBitMask(pin);
_softpwm_channels[firstfree].pwmvalue = value;
// _softpwm_channels[firstfree].checkval = 0;
// now prepare the pin for output
// turn it off to start (no glitch)
if (_softpwm_defaultPolarity == SOFTPWM_NORMAL)
digitalWrite(pin, LOW);
else
digitalWrite(pin, HIGH);
pinMode(pin, OUTPUT);
}
}
void SoftPWMEnd(int8_t pin) {
uint8_t i;
for (i = 0; i < SOFTPWM_MAXCHANNELS; i++) {
if ((pin < 0 && _softpwm_channels[i].pin >= 0) || // ALL pins
(pin >= 0 && _softpwm_channels[i].pin == pin)) // individual pin
{
// now disable the pin (put it into INPUT mode)
digitalWrite(_softpwm_channels[i].pin, 1);
pinMode(_softpwm_channels[i].pin, INPUT);
// remove the pin
_softpwm_channels[i].pin = -1;
}
}
}
void SoftPWMSetFadeTime(int8_t pin, uint16_t fadeUpTime, uint16_t fadeDownTime) {
int16_t fadeAmount;
uint8_t i;
for (i = 0; i < SOFTPWM_MAXCHANNELS; i++) {
if ((pin < 0 && _softpwm_channels[i].pin >= 0) || // ALL pins
(pin >= 0 && _softpwm_channels[i].pin == pin)) // individual pin
{
fadeAmount = 0;
if (fadeUpTime > 0)
fadeAmount = 255UL * (SOFTPWM_OCR * 256UL / (F_CPU / 8000UL)) / fadeUpTime;
_softpwm_channels[i].fadeuprate = fadeAmount;
fadeAmount = 0;
if (fadeDownTime > 0)
fadeAmount = 255UL * (SOFTPWM_OCR * 256UL / (F_CPU / 8000UL)) / fadeDownTime;
_softpwm_channels[i].fadedownrate = fadeAmount;
if (pin >= 0) // we've set individual pin
break;
}
}
}