diff --git a/arduino/libraries/RF24 b/arduino/libraries/RF24 deleted file mode 160000 index ebcd0d1..0000000 --- a/arduino/libraries/RF24 +++ /dev/null @@ -1 +0,0 @@ -Subproject commit ebcd0d1d0b3061fcb57444e1dbe5829ef25705cd diff --git a/arduino/libraries/RF24/RF24.cpp b/arduino/libraries/RF24/RF24.cpp new file mode 100644 index 0000000..6689063 --- /dev/null +++ b/arduino/libraries/RF24/RF24.cpp @@ -0,0 +1,985 @@ +/* + Copyright (C) 2011 J. Coliz + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + version 2 as published by the Free Software Foundation. + */ + +#include "nRF24L01.h" +#include "RF24_config.h" +#include "RF24.h" +#include +/****************************************************************************/ + +void RF24::csn(int mode) +{ + // Minimum ideal SPI bus speed is 2x data rate + // If we assume 2Mbs data rate and 16Mhz clock, a + // divider of 4 is the minimum we want. + // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz +#ifdef ARDUINO + SPI.setBitOrder(MSBFIRST); + SPI.setDataMode(SPI_MODE0); + SPI.setClockDivider(SPI_CLOCK_DIV4); +#endif + digitalWrite(csn_pin,mode); +} + +/****************************************************************************/ + +void RF24::ce(int level) +{ + digitalWrite(ce_pin,level); +} + +/****************************************************************************/ + +uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len) +{ + uint8_t status; + + csn(LOW); + status = SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); + while ( len-- ) + *buf++ = SPI.transfer(0xff); + + csn(HIGH); + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::read_register(uint8_t reg) +{ + csn(LOW); + SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); + uint8_t result = SPI.transfer(0xff); + + csn(HIGH); + return result; +} + +/****************************************************************************/ + +uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len) +{ + uint8_t status; + + csn(LOW); + status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); + while ( len-- ) + SPI.transfer(*buf++); + + csn(HIGH); + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::write_register(uint8_t reg, uint8_t value) +{ + uint8_t status; + + IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"),reg,value)); + + csn(LOW); + status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) ); + SPI.transfer(value); + csn(HIGH); + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::write_payload(const void* buf, uint8_t len) +{ + uint8_t status; + + const uint8_t* current = reinterpret_cast(buf); + + uint8_t data_len = min(len,payload_size); + uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; + + //printf("[Writing %u bytes %u blanks]",data_len,blank_len); + + csn(LOW); + status = SPI.transfer( W_TX_PAYLOAD ); + while ( data_len-- ) + SPI.transfer(*current++); + while ( blank_len-- ) + SPI.transfer(0); + csn(HIGH); + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::read_payload(void* buf, uint8_t len) +{ + uint8_t status; + uint8_t* current = reinterpret_cast(buf); + + uint8_t data_len = min(len,payload_size); + uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; + + //printf("[Reading %u bytes %u blanks]",data_len,blank_len); + + csn(LOW); + status = SPI.transfer( R_RX_PAYLOAD ); + while ( data_len-- ) + *current++ = SPI.transfer(0xff); + while ( blank_len-- ) + SPI.transfer(0xff); + csn(HIGH); + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::flush_rx(void) +{ + uint8_t status; + + csn(LOW); + status = SPI.transfer( FLUSH_RX ); + csn(HIGH); + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::flush_tx(void) +{ + uint8_t status; + + csn(LOW); + status = SPI.transfer( FLUSH_TX ); + csn(HIGH); + + return status; +} + +/****************************************************************************/ + +uint8_t RF24::get_status(void) +{ + uint8_t status; + + csn(LOW); + status = SPI.transfer( NOP ); + csn(HIGH); + + return status; +} + +/****************************************************************************/ + +void RF24::print_status(uint8_t status) +{ + printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"), + status, + (status & _BV(RX_DR))?1:0, + (status & _BV(TX_DS))?1:0, + (status & _BV(MAX_RT))?1:0, + ((status >> RX_P_NO) & B111), + (status & _BV(TX_FULL))?1:0 + ); +} + +/****************************************************************************/ + +void RF24::print_observe_tx(uint8_t value) +{ + printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"), + value, + (value >> PLOS_CNT) & B1111, + (value >> ARC_CNT) & B1111 + ); +} + +/****************************************************************************/ + +void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty) +{ + char extra_tab = strlen_P(name) < 8 ? '\t' : 0; + printf_P(PSTR(PRIPSTR"\t%c ="),name,extra_tab); + while (qty--) + printf_P(PSTR(" 0x%02x"),read_register(reg++)); + printf_P(PSTR("\r\n")); +} + +/****************************************************************************/ + +void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty) +{ + char extra_tab = strlen_P(name) < 8 ? '\t' : 0; + printf_P(PSTR(PRIPSTR"\t%c ="),name,extra_tab); + + while (qty--) + { + uint8_t buffer[5]; + read_register(reg++,buffer,sizeof buffer); + + printf_P(PSTR(" 0x")); + uint8_t* bufptr = buffer + sizeof buffer; + while( --bufptr >= buffer ) + printf_P(PSTR("%02x"),*bufptr); + } + + printf_P(PSTR("\r\n")); +} + +/****************************************************************************/ + +RF24::RF24(uint8_t _cepin, uint8_t _cspin): + ce_pin(_cepin), csn_pin(_cspin), wide_band(true), p_variant(false), + payload_size(32), ack_payload_available(false), dynamic_payloads_enabled(false), + pipe0_reading_address(0) +{ +} + +/****************************************************************************/ + +void RF24::setChannel(uint8_t channel) +{ + // TODO: This method could take advantage of the 'wide_band' calculation + // done in setChannel() to require certain channel spacing. + + const uint8_t max_channel = 127; + write_register(RF_CH,min(channel,max_channel)); +} + +/****************************************************************************/ + +void RF24::setPayloadSize(uint8_t size) +{ + const uint8_t max_payload_size = 32; + payload_size = min(size,max_payload_size); +} + +/****************************************************************************/ + +uint8_t RF24::getPayloadSize(void) +{ + return payload_size; +} + +/****************************************************************************/ + +static const char rf24_datarate_e_str_0[] PROGMEM = "1MBPS"; +static const char rf24_datarate_e_str_1[] PROGMEM = "2MBPS"; +static const char rf24_datarate_e_str_2[] PROGMEM = "250KBPS"; +static const char * const rf24_datarate_e_str_P[] PROGMEM = { + rf24_datarate_e_str_0, + rf24_datarate_e_str_1, + rf24_datarate_e_str_2, +}; +static const char rf24_model_e_str_0[] PROGMEM = "nRF24L01"; +static const char rf24_model_e_str_1[] PROGMEM = "nRF24L01+"; +static const char * const rf24_model_e_str_P[] PROGMEM = { + rf24_model_e_str_0, + rf24_model_e_str_1, +}; +static const char rf24_crclength_e_str_0[] PROGMEM = "Disabled"; +static const char rf24_crclength_e_str_1[] PROGMEM = "8 bits"; +static const char rf24_crclength_e_str_2[] PROGMEM = "16 bits" ; +static const char * const rf24_crclength_e_str_P[] PROGMEM = { + rf24_crclength_e_str_0, + rf24_crclength_e_str_1, + rf24_crclength_e_str_2, +}; +static const char rf24_pa_dbm_e_str_0[] PROGMEM = "PA_MIN"; +static const char rf24_pa_dbm_e_str_1[] PROGMEM = "PA_LOW"; +static const char rf24_pa_dbm_e_str_2[] PROGMEM = "LA_MED"; +static const char rf24_pa_dbm_e_str_3[] PROGMEM = "PA_HIGH"; +static const char * const rf24_pa_dbm_e_str_P[] PROGMEM = { + rf24_pa_dbm_e_str_0, + rf24_pa_dbm_e_str_1, + rf24_pa_dbm_e_str_2, + rf24_pa_dbm_e_str_3, +}; + +void RF24::printDetails(void) +{ + print_status(get_status()); + + print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2); + print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4); + print_address_register(PSTR("TX_ADDR"),TX_ADDR); + + print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6); + print_byte_register(PSTR("EN_AA"),EN_AA); + print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR); + print_byte_register(PSTR("RF_CH"),RF_CH); + print_byte_register(PSTR("RF_SETUP"),RF_SETUP); + print_byte_register(PSTR("CONFIG"),CONFIG); + print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2); + + printf_P(PSTR("Data Rate\t = %S\r\n"),pgm_read_word(&rf24_datarate_e_str_P[getDataRate()])); + printf_P(PSTR("Model\t\t = %S\r\n"),pgm_read_word(&rf24_model_e_str_P[isPVariant()])); + printf_P(PSTR("CRC Length\t = %S\r\n"),pgm_read_word(&rf24_crclength_e_str_P[getCRCLength()])); + printf_P(PSTR("PA Power\t = %S\r\n"),pgm_read_word(&rf24_pa_dbm_e_str_P[getPALevel()])); +} + +/****************************************************************************/ + +void RF24::begin(void) +{ + // Initialize pins + pinMode(ce_pin,OUTPUT); + pinMode(csn_pin,OUTPUT); + + // Initialize SPI bus + SPI.begin(); + + ce(LOW); + csn(HIGH); + + // Must allow the radio time to settle else configuration bits will not necessarily stick. + // This is actually only required following power up but some settling time also appears to + // be required after resets too. For full coverage, we'll always assume the worst. + // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped. + // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure. + // WARNING: Delay is based on P-variant whereby non-P *may* require different timing. + _delay_ms( 5 ) ; + + // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier + // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet + // sizes must never be used. See documentation for a more complete explanation. + write_register(SETUP_RETR,(B0100 << ARD) | (B1111 << ARC)); + + // Restore our default PA level + setPALevel( RF24_PA_MAX ) ; + + // Determine if this is a p or non-p RF24 module and then + // reset our data rate back to default value. This works + // because a non-P variant won't allow the data rate to + // be set to 250Kbps. + if( setDataRate( RF24_250KBPS ) ) + { + p_variant = true ; + } + + // Then set the data rate to the slowest (and most reliable) speed supported by all + // hardware. + setDataRate( RF24_1MBPS ) ; + + // Initialize CRC and request 2-byte (16bit) CRC + setCRCLength( RF24_CRC_16 ) ; + + // Disable dynamic payloads, to match dynamic_payloads_enabled setting + write_register(DYNPD,0); + + // Reset current status + // Notice reset and flush is the last thing we do + write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); + + // Set up default configuration. Callers can always change it later. + // This channel should be universally safe and not bleed over into adjacent + // spectrum. + setChannel(76); + + // Flush buffers + flush_rx(); + flush_tx(); +} + +/****************************************************************************/ + +void RF24::startListening(void) +{ + write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX)); + write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); + + // Restore the pipe0 adddress, if exists + if (pipe0_reading_address) + write_register(RX_ADDR_P0, reinterpret_cast(&pipe0_reading_address), 5); + + // Flush buffers + flush_rx(); + flush_tx(); + + // Go! + ce(HIGH); + + // wait for the radio to come up (130us actually only needed) + delayMicroseconds(130); +} + +/****************************************************************************/ + +void RF24::stopListening(void) +{ + ce(LOW); + flush_tx(); + flush_rx(); +} + +/****************************************************************************/ + +void RF24::powerDown(void) +{ + write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP)); +} + +/****************************************************************************/ + +void RF24::powerUp(void) +{ + write_register(CONFIG,read_register(CONFIG) | _BV(PWR_UP)); +} + +/******************************************************************/ + +bool RF24::write( const void* buf, uint8_t len ) +{ + bool result = false; + + // Begin the write + startWrite(buf,len); + + // ------------ + // At this point we could return from a non-blocking write, and then call + // the rest after an interrupt + + // Instead, we are going to block here until we get TX_DS (transmission completed and ack'd) + // or MAX_RT (maximum retries, transmission failed). Also, we'll timeout in case the radio + // is flaky and we get neither. + + // IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster + // if I tighted up the retry logic. (Default settings will be 1500us. + // Monitor the send + uint8_t observe_tx; + uint8_t status; + uint32_t sent_at = millis(); + const uint32_t timeout = 500; //ms to wait for timeout + do + { + status = read_register(OBSERVE_TX,&observe_tx,1); + IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX)); + } + while( ! ( status & ( _BV(TX_DS) | _BV(MAX_RT) ) ) && ( millis() - sent_at < timeout ) ); + + // The part above is what you could recreate with your own interrupt handler, + // and then call this when you got an interrupt + // ------------ + + // Call this when you get an interrupt + // The status tells us three things + // * The send was successful (TX_DS) + // * The send failed, too many retries (MAX_RT) + // * There is an ack packet waiting (RX_DR) + bool tx_ok, tx_fail; + whatHappened(tx_ok,tx_fail,ack_payload_available); + + //printf("%u%u%u\r\n",tx_ok,tx_fail,ack_payload_available); + + result = tx_ok; + IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed")); + + // Handle the ack packet + if ( ack_payload_available ) + { + ack_payload_length = getDynamicPayloadSize(); + IF_SERIAL_DEBUG(Serial.print("[AckPacket]/")); + IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC)); + } + + // Yay, we are done. + + // Power down + powerDown(); + + // Flush buffers (Is this a relic of past experimentation, and not needed anymore??) + flush_tx(); + + return result; +} +/****************************************************************************/ + +void RF24::startWrite( const void* buf, uint8_t len ) +{ + // Transmitter power-up + write_register(CONFIG, ( read_register(CONFIG) | _BV(PWR_UP) ) & ~_BV(PRIM_RX) ); + delayMicroseconds(150); + + // Send the payload + write_payload( buf, len ); + + // Allons! + ce(HIGH); + delayMicroseconds(15); + ce(LOW); +} + +/****************************************************************************/ + +uint8_t RF24::getDynamicPayloadSize(void) +{ + uint8_t result = 0; + + csn(LOW); + SPI.transfer( R_RX_PL_WID ); + result = SPI.transfer(0xff); + csn(HIGH); + + return result; +} + +/****************************************************************************/ + +bool RF24::available(void) +{ + return available(NULL); +} + +/****************************************************************************/ + +bool RF24::available(uint8_t* pipe_num) +{ + uint8_t status = get_status(); + + // Too noisy, enable if you really want lots o data!! + //IF_SERIAL_DEBUG(print_status(status)); + + bool result = ( status & _BV(RX_DR) ); + + if (result) + { + // If the caller wants the pipe number, include that + if ( pipe_num ) + *pipe_num = ( status >> RX_P_NO ) & B111; + + // Clear the status bit + + // ??? Should this REALLY be cleared now? Or wait until we + // actually READ the payload? + + write_register(STATUS,_BV(RX_DR) ); + + // Handle ack payload receipt + if ( status & _BV(TX_DS) ) + { + write_register(STATUS,_BV(TX_DS)); + } + } + + return result; +} + +/****************************************************************************/ + +bool RF24::read( void* buf, uint8_t len ) +{ + // Fetch the payload + read_payload( buf, len ); + + // was this the last of the data available? + return read_register(FIFO_STATUS) & _BV(RX_EMPTY); +} + +/****************************************************************************/ + +void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready) +{ + // Read the status & reset the status in one easy call + // Or is that such a good idea? + uint8_t status = write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); + + // Report to the user what happened + tx_ok = status & _BV(TX_DS); + tx_fail = status & _BV(MAX_RT); + rx_ready = status & _BV(RX_DR); +} + +/****************************************************************************/ + +void RF24::openWritingPipe(uint64_t value) +{ + // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) + // expects it LSB first too, so we're good. + + write_register(RX_ADDR_P0, reinterpret_cast(&value), 5); + write_register(TX_ADDR, reinterpret_cast(&value), 5); + + const uint8_t max_payload_size = 32; + write_register(RX_PW_P0,min(payload_size,max_payload_size)); +} + +/****************************************************************************/ + +static const uint8_t child_pipe[] PROGMEM = +{ + RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 +}; +static const uint8_t child_payload_size[] PROGMEM = +{ + RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 +}; +static const uint8_t child_pipe_enable[] PROGMEM = +{ + ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 +}; + +void RF24::openReadingPipe(uint8_t child, uint64_t address) +{ + // If this is pipe 0, cache the address. This is needed because + // openWritingPipe() will overwrite the pipe 0 address, so + // startListening() will have to restore it. + if (child == 0) + pipe0_reading_address = address; + + if (child <= 6) + { + // For pipes 2-5, only write the LSB + if ( child < 2 ) + write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast(&address), 5); + else + write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast(&address), 1); + + write_register(pgm_read_byte(&child_payload_size[child]),payload_size); + + // Note it would be more efficient to set all of the bits for all open + // pipes at once. However, I thought it would make the calling code + // more simple to do it this way. + write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); + } +} + +/****************************************************************************/ + +void RF24::toggle_features(void) +{ + csn(LOW); + SPI.transfer( ACTIVATE ); + SPI.transfer( 0x73 ); + csn(HIGH); +} + +/****************************************************************************/ + +void RF24::enableDynamicPayloads(void) +{ + // Enable dynamic payload throughout the system + write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) ); + + // If it didn't work, the features are not enabled + if ( ! read_register(FEATURE) ) + { + // So enable them and try again + toggle_features(); + write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) ); + } + + IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); + + // Enable dynamic payload on all pipes + // + // Not sure the use case of only having dynamic payload on certain + // pipes, so the library does not support it. + write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0)); + + dynamic_payloads_enabled = true; +} + +/****************************************************************************/ + +void RF24::enableAckPayload(void) +{ + // + // enable ack payload and dynamic payload features + // + + write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) ); + + // If it didn't work, the features are not enabled + if ( ! read_register(FEATURE) ) + { + // So enable them and try again + toggle_features(); + write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) ); + } + + IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); + + // + // Enable dynamic payload on pipes 0 & 1 + // + + write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0)); +} + +/****************************************************************************/ + +void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len) +{ + const uint8_t* current = reinterpret_cast(buf); + + csn(LOW); + SPI.transfer( W_ACK_PAYLOAD | ( pipe & B111 ) ); + const uint8_t max_payload_size = 32; + uint8_t data_len = min(len,max_payload_size); + while ( data_len-- ) + SPI.transfer(*current++); + + csn(HIGH); +} + +/****************************************************************************/ + +bool RF24::isAckPayloadAvailable(void) +{ + bool result = ack_payload_available; + ack_payload_available = false; + return result; +} + +/****************************************************************************/ + +bool RF24::isPVariant(void) +{ + return p_variant ; +} + +/****************************************************************************/ + +void RF24::setAutoAck(bool enable) +{ + if ( enable ) + write_register(EN_AA, B111111); + else + write_register(EN_AA, 0); +} + +/****************************************************************************/ + +void RF24::setAutoAck( uint8_t pipe, bool enable ) +{ + if ( pipe <= 6 ) + { + uint8_t en_aa = read_register( EN_AA ) ; + if( enable ) + { + en_aa |= _BV(pipe) ; + } + else + { + en_aa &= ~_BV(pipe) ; + } + write_register( EN_AA, en_aa ) ; + } +} + +/****************************************************************************/ + +bool RF24::testCarrier(void) +{ + return ( read_register(CD) & 1 ); +} + +/****************************************************************************/ + +bool RF24::testRPD(void) +{ + return ( read_register(RPD) & 1 ) ; +} + +/****************************************************************************/ + +void RF24::setPALevel(rf24_pa_dbm_e level) +{ + uint8_t setup = read_register(RF_SETUP) ; + setup &= ~(_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ; + + // switch uses RAM (evil!) + if ( level == RF24_PA_MAX ) + { + setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ; + } + else if ( level == RF24_PA_HIGH ) + { + setup |= _BV(RF_PWR_HIGH) ; + } + else if ( level == RF24_PA_LOW ) + { + setup |= _BV(RF_PWR_LOW); + } + else if ( level == RF24_PA_MIN ) + { + // nothing + } + else if ( level == RF24_PA_ERROR ) + { + // On error, go to maximum PA + setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ; + } + + write_register( RF_SETUP, setup ) ; +} + +/****************************************************************************/ + +rf24_pa_dbm_e RF24::getPALevel(void) +{ + rf24_pa_dbm_e result = RF24_PA_ERROR ; + uint8_t power = read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ; + + // switch uses RAM (evil!) + if ( power == (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ) + { + result = RF24_PA_MAX ; + } + else if ( power == _BV(RF_PWR_HIGH) ) + { + result = RF24_PA_HIGH ; + } + else if ( power == _BV(RF_PWR_LOW) ) + { + result = RF24_PA_LOW ; + } + else + { + result = RF24_PA_MIN ; + } + + return result ; +} + +/****************************************************************************/ + +bool RF24::setDataRate(rf24_datarate_e speed) +{ + bool result = false; + uint8_t setup = read_register(RF_SETUP) ; + + // HIGH and LOW '00' is 1Mbs - our default + wide_band = false ; + setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ; + if( speed == RF24_250KBPS ) + { + // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0 + // Making it '10'. + wide_band = false ; + setup |= _BV( RF_DR_LOW ) ; + } + else + { + // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1 + // Making it '01' + if ( speed == RF24_2MBPS ) + { + wide_band = true ; + setup |= _BV(RF_DR_HIGH); + } + else + { + // 1Mbs + wide_band = false ; + } + } + write_register(RF_SETUP,setup); + + // Verify our result + if ( read_register(RF_SETUP) == setup ) + { + result = true; + } + else + { + wide_band = false; + } + + return result; +} + +/****************************************************************************/ + +rf24_datarate_e RF24::getDataRate( void ) +{ + rf24_datarate_e result ; + uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)); + + // switch uses RAM (evil!) + // Order matters in our case below + if ( dr == _BV(RF_DR_LOW) ) + { + // '10' = 250KBPS + result = RF24_250KBPS ; + } + else if ( dr == _BV(RF_DR_HIGH) ) + { + // '01' = 2MBPS + result = RF24_2MBPS ; + } + else + { + // '00' = 1MBPS + result = RF24_1MBPS ; + } + return result ; +} + +/****************************************************************************/ + +void RF24::setCRCLength(rf24_crclength_e length) +{ + uint8_t config = read_register(CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ; + + // switch uses RAM (evil!) + if ( length == RF24_CRC_DISABLED ) + { + // Do nothing, we turned it off above. + } + else if ( length == RF24_CRC_8 ) + { + config |= _BV(EN_CRC); + } + else + { + config |= _BV(EN_CRC); + config |= _BV( CRCO ); + } + write_register( CONFIG, config ) ; +} + +/****************************************************************************/ + +rf24_crclength_e RF24::getCRCLength(void) +{ + rf24_crclength_e result = RF24_CRC_DISABLED; + uint8_t config = read_register(CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ; + + if ( config & _BV(EN_CRC ) ) + { + if ( config & _BV(CRCO) ) + result = RF24_CRC_16; + else + result = RF24_CRC_8; + } + + return result; +} + +/****************************************************************************/ + +void RF24::disableCRC( void ) +{ + uint8_t disable = read_register(CONFIG) & ~_BV(EN_CRC) ; + write_register( CONFIG, disable ) ; +} + +/****************************************************************************/ +void RF24::setRetries(uint8_t delay, uint8_t count) +{ + write_register(SETUP_RETR,(delay&0xf)< + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + version 2 as published by the Free Software Foundation. + */ + +/** + * @file RF24.h + * + * Class declaration for RF24 and helper enums + */ + +#ifndef __RF24_H__ +#define __RF24_H__ + +#include +#include +/** + * Power Amplifier level. + * + * For use with setPALevel() + */ +typedef enum { RF24_PA_MIN = 0,RF24_PA_LOW, RF24_PA_HIGH, RF24_PA_MAX, RF24_PA_ERROR } rf24_pa_dbm_e ; + +/** + * Data rate. How fast data moves through the air. + * + * For use with setDataRate() + */ +typedef enum { RF24_1MBPS = 0, RF24_2MBPS, RF24_250KBPS } rf24_datarate_e; + +/** + * CRC Length. How big (if any) of a CRC is included. + * + * For use with setCRCLength() + */ +typedef enum { RF24_CRC_DISABLED = 0, RF24_CRC_8, RF24_CRC_16 } rf24_crclength_e; + +/** + * Driver for nRF24L01(+) 2.4GHz Wireless Transceiver + */ + +class RF24 +{ +private: + uint8_t ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */ + uint8_t csn_pin; /**< SPI Chip select */ + bool wide_band; /* 2Mbs data rate in use? */ + bool p_variant; /* False for RF24L01 and true for RF24L01P */ + uint8_t payload_size; /**< Fixed size of payloads */ + bool ack_payload_available; /**< Whether there is an ack payload waiting */ + bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */ + uint8_t ack_payload_length; /**< Dynamic size of pending ack payload. */ + uint64_t pipe0_reading_address; /**< Last address set on pipe 0 for reading. */ + +public: + /** + * @name Low-level internal interface. + * + * Protected methods that address the chip directly. Regular users cannot + * ever call these. They are documented for completeness and for developers who + * may want to extend this class. + */ + /**@{*/ + + /** + * Set chip select pin + * + * Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data + * and best of all, we make use of the radio's FIFO buffers. A lower speed + * means we're less likely to effectively leverage our FIFOs and pay a higher + * AVR runtime cost as toll. + * + * @param mode HIGH to take this unit off the SPI bus, LOW to put it on + */ + void csn(int mode); + + /** + * Set chip enable + * + * @param level HIGH to actively begin transmission or LOW to put in standby. Please see data sheet + * for a much more detailed description of this pin. + */ + void ce(int level); + + /** + * Read a chunk of data in from a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @param buf Where to put the data + * @param len How many bytes of data to transfer + * @return Current value of status register + */ + uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len); + + /** + * Read single byte from a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @return Current value of register @p reg + */ + uint8_t read_register(uint8_t reg); + + /** + * Write a chunk of data to a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @param buf Where to get the data + * @param len How many bytes of data to transfer + * @return Current value of status register + */ + uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len); + + /** + * Write a single byte to a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @param value The new value to write + * @return Current value of status register + */ + uint8_t write_register(uint8_t reg, uint8_t value); + + /** + * Write the transmit payload + * + * The size of data written is the fixed payload size, see getPayloadSize() + * + * @param buf Where to get the data + * @param len Number of bytes to be sent + * @return Current value of status register + */ + uint8_t write_payload(const void* buf, uint8_t len); + + /** + * Read the receive payload + * + * The size of data read is the fixed payload size, see getPayloadSize() + * + * @param buf Where to put the data + * @param len Maximum number of bytes to read + * @return Current value of status register + */ + uint8_t read_payload(void* buf, uint8_t len); + + /** + * Empty the receive buffer + * + * @return Current value of status register + */ + uint8_t flush_rx(void); + + /** + * Empty the transmit buffer + * + * @return Current value of status register + */ + uint8_t flush_tx(void); + + /** + * Retrieve the current status of the chip + * + * @return Current value of status register + */ + uint8_t get_status(void); + + /** + * Decode and print the given status to stdout + * + * @param status Status value to print + * + * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h + */ + void print_status(uint8_t status); + + /** + * Decode and print the given 'observe_tx' value to stdout + * + * @param value The observe_tx value to print + * + * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h + */ + void print_observe_tx(uint8_t value); + + /** + * Print the name and value of an 8-bit register to stdout + * + * Optionally it can print some quantity of successive + * registers on the same line. This is useful for printing a group + * of related registers on one line. + * + * @param name Name of the register + * @param reg Which register. Use constants from nRF24L01.h + * @param qty How many successive registers to print + */ + void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1); + + /** + * Print the name and value of a 40-bit address register to stdout + * + * Optionally it can print some quantity of successive + * registers on the same line. This is useful for printing a group + * of related registers on one line. + * + * @param name Name of the register + * @param reg Which register. Use constants from nRF24L01.h + * @param qty How many successive registers to print + */ + void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1); + + /** + * Turn on or off the special features of the chip + * + * The chip has certain 'features' which are only available when the 'features' + * are enabled. See the datasheet for details. + */ + void toggle_features(void); + /**@}*/ + +//public: + /** + * @name Primary public interface + * + * These are the main methods you need to operate the chip + */ + /**@{*/ + + /** + * Constructor + * + * Creates a new instance of this driver. Before using, you create an instance + * and send in the unique pins that this chip is connected to. + * + * @param _cepin The pin attached to Chip Enable on the RF module + * @param _cspin The pin attached to Chip Select + */ + RF24(uint8_t _cepin, uint8_t _cspin); + + /** + * Begin operation of the chip + * + * Call this in setup(), before calling any other methods. + */ + void begin(void); + + /** + * Start listening on the pipes opened for reading. + * + * Be sure to call openReadingPipe() first. Do not call write() while + * in this mode, without first calling stopListening(). Call + * isAvailable() to check for incoming traffic, and read() to get it. + */ + void startListening(void); + + /** + * Stop listening for incoming messages + * + * Do this before calling write(). + */ + void stopListening(void); + + /** + * Write to the open writing pipe + * + * Be sure to call openWritingPipe() first to set the destination + * of where to write to. + * + * This blocks until the message is successfully acknowledged by + * the receiver or the timeout/retransmit maxima are reached. In + * the current configuration, the max delay here is 60ms. + * + * The maximum size of data written is the fixed payload size, see + * getPayloadSize(). However, you can write less, and the remainder + * will just be filled with zeroes. + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @return True if the payload was delivered successfully false if not + */ + bool write( const void* buf, uint8_t len ); + + /** + * Test whether there are bytes available to be read + * + * @return True if there is a payload available, false if none is + */ + bool available(void); + + /** + * Read the payload + * + * Return the last payload received + * + * The size of data read is the fixed payload size, see getPayloadSize() + * + * @note I specifically chose 'void*' as a data type to make it easier + * for beginners to use. No casting needed. + * + * @param buf Pointer to a buffer where the data should be written + * @param len Maximum number of bytes to read into the buffer + * @return True if the payload was delivered successfully false if not + */ + bool read( void* buf, uint8_t len ); + + /** + * Open a pipe for writing + * + * Only one pipe can be open at once, but you can change the pipe + * you'll listen to. Do not call this while actively listening. + * Remember to stopListening() first. + * + * Addresses are 40-bit hex values, e.g.: + * + * @code + * openWritingPipe(0xF0F0F0F0F0); + * @endcode + * + * @param address The 40-bit address of the pipe to open. This can be + * any value whatsoever, as long as you are the only one writing to it + * and only one other radio is listening to it. Coordinate these pipe + * addresses amongst nodes on the network. + */ + void openWritingPipe(uint64_t address); + + /** + * Open a pipe for reading + * + * Up to 6 pipes can be open for reading at once. Open all the + * reading pipes, and then call startListening(). + * + * @see openWritingPipe + * + * @warning Pipes 1-5 should share the first 32 bits. + * Only the least significant byte should be unique, e.g. + * @code + * openReadingPipe(1,0xF0F0F0F0AA); + * openReadingPipe(2,0xF0F0F0F066); + * @endcode + * + * @warning Pipe 0 is also used by the writing pipe. So if you open + * pipe 0 for reading, and then startListening(), it will overwrite the + * writing pipe. Ergo, do an openWritingPipe() again before write(). + * + * @todo Enforce the restriction that pipes 1-5 must share the top 32 bits + * + * @param number Which pipe# to open, 0-5. + * @param address The 40-bit address of the pipe to open. + */ + void openReadingPipe(uint8_t number, uint64_t address); + + /**@}*/ + /** + * @name Optional Configurators + * + * Methods you can use to get or set the configuration of the chip. + * None are required. Calling begin() sets up a reasonable set of + * defaults. + */ + /**@{*/ + /** + * Set the number and delay of retries upon failed submit + * + * @param delay How long to wait between each retry, in multiples of 250us, + * max is 15. 0 means 250us, 15 means 4000us. + * @param count How many retries before giving up, max 15 + */ + void setRetries(uint8_t delay, uint8_t count); + + /** + * Set RF communication channel + * + * @param channel Which RF channel to communicate on, 0-127 + */ + void setChannel(uint8_t channel); + + /** + * Set Static Payload Size + * + * This implementation uses a pre-stablished fixed payload size for all + * transmissions. If this method is never called, the driver will always + * transmit the maximum payload size (32 bytes), no matter how much + * was sent to write(). + * + * @todo Implement variable-sized payloads feature + * + * @param size The number of bytes in the payload + */ + void setPayloadSize(uint8_t size); + + /** + * Get Static Payload Size + * + * @see setPayloadSize() + * + * @return The number of bytes in the payload + */ + uint8_t getPayloadSize(void); + + /** + * Get Dynamic Payload Size + * + * For dynamic payloads, this pulls the size of the payload off + * the chip + * + * @return Payload length of last-received dynamic payload + */ + uint8_t getDynamicPayloadSize(void); + + /** + * Enable custom payloads on the acknowledge packets + * + * Ack payloads are a handy way to return data back to senders without + * manually changing the radio modes on both units. + * + * @see examples/pingpair_pl/pingpair_pl.pde + */ + void enableAckPayload(void); + + /** + * Enable dynamically-sized payloads + * + * This way you don't always have to send large packets just to send them + * once in a while. This enables dynamic payloads on ALL pipes. + * + * @see examples/pingpair_pl/pingpair_dyn.pde + */ + void enableDynamicPayloads(void); + + /** + * Determine whether the hardware is an nRF24L01+ or not. + * + * @return true if the hardware is nRF24L01+ (or compatible) and false + * if its not. + */ + bool isPVariant(void) ; + + /** + * Enable or disable auto-acknowlede packets + * + * This is enabled by default, so it's only needed if you want to turn + * it off for some reason. + * + * @param enable Whether to enable (true) or disable (false) auto-acks + */ + void setAutoAck(bool enable); + + /** + * Enable or disable auto-acknowlede packets on a per pipeline basis. + * + * AA is enabled by default, so it's only needed if you want to turn + * it off/on for some reason on a per pipeline basis. + * + * @param pipe Which pipeline to modify + * @param enable Whether to enable (true) or disable (false) auto-acks + */ + void setAutoAck( uint8_t pipe, bool enable ) ; + + /** + * Set Power Amplifier (PA) level to one of four levels. + * Relative mnemonics have been used to allow for future PA level + * changes. According to 6.5 of the nRF24L01+ specification sheet, + * they translate to: RF24_PA_MIN=-18dBm, RF24_PA_LOW=-12dBm, + * RF24_PA_MED=-6dBM, and RF24_PA_HIGH=0dBm. + * + * @param level Desired PA level. + */ + void setPALevel( rf24_pa_dbm_e level ) ; + + /** + * Fetches the current PA level. + * + * @return Returns a value from the rf24_pa_dbm_e enum describing + * the current PA setting. Please remember, all values represented + * by the enum mnemonics are negative dBm. See setPALevel for + * return value descriptions. + */ + rf24_pa_dbm_e getPALevel( void ) ; + + /** + * Set the transmission data rate + * + * @warning setting RF24_250KBPS will fail for non-plus units + * + * @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps + * @return true if the change was successful + */ + bool setDataRate(rf24_datarate_e speed); + + /** + * Fetches the transmission data rate + * + * @return Returns the hardware's currently configured datarate. The value + * is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the + * rf24_datarate_e enum. + */ + rf24_datarate_e getDataRate( void ) ; + + /** + * Set the CRC length + * + * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit + */ + void setCRCLength(rf24_crclength_e length); + + /** + * Get the CRC length + * + * @return RF24_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit + */ + rf24_crclength_e getCRCLength(void); + + /** + * Disable CRC validation + * + */ + void disableCRC( void ) ; + + /**@}*/ + /** + * @name Advanced Operation + * + * Methods you can use to drive the chip in more advanced ways + */ + /**@{*/ + + /** + * Print a giant block of debugging information to stdout + * + * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h + */ + void printDetails(void); + + /** + * Enter low-power mode + * + * To return to normal power mode, either write() some data or + * startListening, or powerUp(). + */ + void powerDown(void); + + /** + * Leave low-power mode - making radio more responsive + * + * To return to low power mode, call powerDown(). + */ + void powerUp(void) ; + + /** + * Test whether there are bytes available to be read + * + * Use this version to discover on which pipe the message + * arrived. + * + * @param[out] pipe_num Which pipe has the payload available + * @return True if there is a payload available, false if none is + */ + bool available(uint8_t* pipe_num); + + /** + * Non-blocking write to the open writing pipe + * + * Just like write(), but it returns immediately. To find out what happened + * to the send, catch the IRQ and then call whatHappened(). + * + * @see write() + * @see whatHappened() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @return True if the payload was delivered successfully false if not + */ + void startWrite( const void* buf, uint8_t len ); + + /** + * Write an ack payload for the specified pipe + * + * The next time a message is received on @p pipe, the data in @p buf will + * be sent back in the acknowledgement. + * + * @warning According to the data sheet, only three of these can be pending + * at any time. I have not tested this. + * + * @param pipe Which pipe# (typically 1-5) will get this response. + * @param buf Pointer to data that is sent + * @param len Length of the data to send, up to 32 bytes max. Not affected + * by the static payload set by setPayloadSize(). + */ + void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len); + + /** + * Determine if an ack payload was received in the most recent call to + * write(). + * + * Call read() to retrieve the ack payload. + * + * @warning Calling this function clears the internal flag which indicates + * a payload is available. If it returns true, you must read the packet + * out as the very next interaction with the radio, or the results are + * undefined. + * + * @return True if an ack payload is available. + */ + bool isAckPayloadAvailable(void); + + /** + * Call this when you get an interrupt to find out why + * + * Tells you what caused the interrupt, and clears the state of + * interrupts. + * + * @param[out] tx_ok The send was successful (TX_DS) + * @param[out] tx_fail The send failed, too many retries (MAX_RT) + * @param[out] rx_ready There is a message waiting to be read (RX_DS) + */ + void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready); + + /** + * Test whether there was a carrier on the line for the + * previous listening period. + * + * Useful to check for interference on the current channel. + * + * @return true if was carrier, false if not + */ + bool testCarrier(void); + + /** + * Test whether a signal (carrier or otherwise) greater than + * or equal to -64dBm is present on the channel. Valid only + * on nRF24L01P (+) hardware. On nRF24L01, use testCarrier(). + * + * Useful to check for interference on the current channel and + * channel hopping strategies. + * + * @return true if signal => -64dBm, false if not + */ + bool testRPD(void) ; + + /** + * Test whether this is a real radio, or a mock shim for + * debugging. Setting either pin to 0xff is the way to + * indicate that this is not a real radio. + * + * @return true if this is a legitimate radio + */ + bool isValid() { return ce_pin != 0xff && csn_pin != 0xff; } + + /**@}*/ +}; + +/** + * @example GettingStarted.pde + * + * This is an example which corresponds to my "Getting Started" blog post: + * Getting Started with nRF24L01+ on Arduino. + * + * It is an example of how to use the RF24 class. Write this sketch to two + * different nodes. Put one of the nodes into 'transmit' mode by connecting + * with the serial monitor and sending a 'T'. The ping node sends the current + * time to the pong node, which responds by sending the value back. The ping + * node can then see how long the whole cycle took. + */ + +/** + * @example nordic_fob.pde + * + * This is an example of how to use the RF24 class to receive signals from the + * Sparkfun Nordic FOB. See http://www.sparkfun.com/products/8602 . + * Thanks to Kirk Mower for providing test hardware. + */ + +/** + * @example led_remote.pde + * + * This is an example of how to use the RF24 class to control a remote + * bank of LED's using buttons on a remote control. + * + * Every time the buttons change on the remote, the entire state of + * buttons is send to the led board, which displays the state. + */ + +/** + * @example pingpair.pde + * + * This is an example of how to use the RF24 class. Write this sketch to two + * different nodes, connect the role_pin to ground on one. The ping node sends + * the current time to the pong node, which responds by sending the value back. + * The ping node can then see how long the whole cycle took. + */ + +/** + * @example pingpair_maple.pde + * + * This is an example of how to use the RF24 class on the Maple. For a more + * detailed explanation, see my blog post: + * nRF24L01+ Running on Maple + * + * It will communicate well to an Arduino-based unit as well, so it's not for only Maple-to-Maple communication. + * + * Write this sketch to two different nodes, + * connect the role_pin to ground on one. The ping node sends the current time to the pong node, + * which responds by sending the value back. The ping node can then see how long the whole cycle + * took. + */ + +/** + * @example starping.pde + * + * This sketch is a more complex example of using the RF24 library for Arduino. + * Deploy this on up to six nodes. Set one as the 'pong receiver' by tying the + * role_pin low, and the others will be 'ping transmit' units. The ping units + * unit will send out the value of millis() once a second. The pong unit will + * respond back with a copy of the value. Each ping unit can get that response + * back, and determine how long the whole cycle took. + * + * This example requires a bit more complexity to determine which unit is which. + * The pong receiver is identified by having its role_pin tied to ground. + * The ping senders are further differentiated by a byte in eeprom. + */ + +/** + * @example pingpair_pl.pde + * + * This is an example of how to do two-way communication without changing + * transmit/receive modes. Here, a payload is set to the transmitter within + * the Ack packet of each transmission. Note that the payload is set BEFORE + * the sender's message arrives. + */ + +/** + * @example pingpair_irq.pde + * + * This is an example of how to user interrupts to interact with the radio. + * It builds on the pingpair_pl example, and uses ack payloads. + */ + +/** + * @example pingpair_sleepy.pde + * + * This is an example of how to use the RF24 class to create a battery- + * efficient system. It is just like the pingpair.pde example, but the + * ping node powers down the radio and sleeps the MCU after every + * ping/pong cycle. + */ + +/** + * @example scanner.pde + * + * Example to detect interference on the various channels available. + * This is a good diagnostic tool to check whether you're picking a + * good channel for your application. + * + * Inspired by cpixip. + * See http://arduino.cc/forum/index.php/topic,54795.0.html + */ + +/** + * @mainpage Driver for nRF24L01(+) 2.4GHz Wireless Transceiver + * + * @section Goals Design Goals + * + * This library is designed to be... + * @li Maximally compliant with the intended operation of the chip + * @li Easy for beginners to use + * @li Consumed with a public interface that's similiar to other Arduino standard libraries + * + * @section News News + * + * NOW COMPATIBLE WITH ARDUINO 1.0 - The 'master' branch and all examples work with both Arduino 1.0 and earlier versions. + * Please open an issue if you find any problems using it with any version of Arduino. + * + * NOW COMPATIBLE WITH MAPLE - RF24 has been tested with the + * Maple Native, + * and should work with any Maple board. See the pingpair_maple example. + * Note that only the pingpair_maple example has been tested on Maple, although + * the others can certainly be adapted. + * + * @section Useful Useful References + * + * Please refer to: + * + * @li Documentation Main Page + * @li RF24 Class Documentation + * @li Source Code + * @li Downloads Page + * @li Chip Datasheet + * + * This chip uses the SPI bus, plus two chip control pins. Remember that pin 10 must still remain an output, or + * the SPI hardware will go into 'slave' mode. + * + * @section More More Information + * + * @subpage FAQ + * + * @section Projects Projects + * + * Stuff I have built with RF24 + * + * RF24 Getting Started - Finished Product + * + * Getting Started with nRF24L01+ on Arduino + * + * Nordic FOB and nRF24L01+ + * + * Using the Sparkfun Nordic FOB + * + * RF Duinode V3 (2V4) + * + * Low-Power Wireless Sensor Node + * + * nRF24L01+ connected to Leaf Labs Maple Native + * + * nRF24L01+ Running on Maple + */ + +#endif // __RF24_H__ +// vim:ai:cin:sts=2 sw=2 ft=cpp + diff --git a/arduino/libraries/RF24/RF24_config.h b/arduino/libraries/RF24/RF24_config.h new file mode 100644 index 0000000..9c58a1c --- /dev/null +++ b/arduino/libraries/RF24/RF24_config.h @@ -0,0 +1,65 @@ + +/* + Copyright (C) 2011 J. Coliz + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + version 2 as published by the Free Software Foundation. + */ + +#ifndef __RF24_CONFIG_H__ +#define __RF24_CONFIG_H__ + +//#if ARDUINO < 100 +//#include +//#else +#include +//#endif + +#include + +// Stuff that is normally provided by Arduino +#ifdef ARDUINO +#include +#else +#include +#include +#include +extern HardwareSPI SPI; +#define _BV(x) (1<<(x)) +#endif + +#undef SERIAL_DEBUG +#ifdef SERIAL_DEBUG +#define IF_SERIAL_DEBUG(x) ({x;}) +#else +#define IF_SERIAL_DEBUG(x) +#endif + +// Avoid spurious warnings +#if 1 +#if ! defined( NATIVE ) && defined( ARDUINO ) +#undef PROGMEM +#define PROGMEM __attribute__(( section(".progmem.data") )) +#undef PSTR +#define PSTR(s) (__extension__({static const char __c[] PROGMEM = (s); &__c[0];})) +#endif +#endif + +// Progmem is Arduino-specific +#ifdef ARDUINO +#include +#define PRIPSTR "%S" +#else +typedef char const char; +typedef uint16_t prog_uint16_t; +#define PSTR(x) (x) +#define printf_P printf +#define strlen_P strlen +#define PROGMEM +#define pgm_read_word(p) (*(p)) +#define PRIPSTR "%s" +#endif + +#endif // __RF24_CONFIG_H__ +// vim:ai:cin:sts=2 sw=2 ft=cpp diff --git a/arduino/libraries/RF24/nRF24L01.h b/arduino/libraries/RF24/nRF24L01.h new file mode 100644 index 0000000..2012ce6 --- /dev/null +++ b/arduino/libraries/RF24/nRF24L01.h @@ -0,0 +1,125 @@ +/* + Copyright (c) 2007 Stefan Engelke + + Permission is hereby granted, free of charge, to any person + obtaining a copy of this software and associated documentation + files (the "Software"), to deal in the Software without + restriction, including without limitation the rights to use, copy, + modify, merge, publish, distribute, sublicense, and/or sell copies + of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. +*/ + +/* Memory Map */ +#define CONFIG 0x00 +#define EN_AA 0x01 +#define EN_RXADDR 0x02 +#define SETUP_AW 0x03 +#define SETUP_RETR 0x04 +#define RF_CH 0x05 +#define RF_SETUP 0x06 +#define STATUS 0x07 +#define OBSERVE_TX 0x08 +#define CD 0x09 +#define RX_ADDR_P0 0x0A +#define RX_ADDR_P1 0x0B +#define RX_ADDR_P2 0x0C +#define RX_ADDR_P3 0x0D +#define RX_ADDR_P4 0x0E +#define RX_ADDR_P5 0x0F +#define TX_ADDR 0x10 +#define RX_PW_P0 0x11 +#define RX_PW_P1 0x12 +#define RX_PW_P2 0x13 +#define RX_PW_P3 0x14 +#define RX_PW_P4 0x15 +#define RX_PW_P5 0x16 +#define FIFO_STATUS 0x17 +#define DYNPD 0x1C +#define FEATURE 0x1D + +/* Bit Mnemonics */ +#define MASK_RX_DR 6 +#define MASK_TX_DS 5 +#define MASK_MAX_RT 4 +#define EN_CRC 3 +#define CRCO 2 +#define PWR_UP 1 +#define PRIM_RX 0 +#define ENAA_P5 5 +#define ENAA_P4 4 +#define ENAA_P3 3 +#define ENAA_P2 2 +#define ENAA_P1 1 +#define ENAA_P0 0 +#define ERX_P5 5 +#define ERX_P4 4 +#define ERX_P3 3 +#define ERX_P2 2 +#define ERX_P1 1 +#define ERX_P0 0 +#define AW 0 +#define ARD 4 +#define ARC 0 +#define PLL_LOCK 4 +#define RF_DR 3 +#define RF_PWR 6 +#define RX_DR 6 +#define TX_DS 5 +#define MAX_RT 4 +#define RX_P_NO 1 +#define TX_FULL 0 +#define PLOS_CNT 4 +#define ARC_CNT 0 +#define TX_REUSE 6 +#define FIFO_FULL 5 +#define TX_EMPTY 4 +#define RX_FULL 1 +#define RX_EMPTY 0 +#define DPL_P5 5 +#define DPL_P4 4 +#define DPL_P3 3 +#define DPL_P2 2 +#define DPL_P1 1 +#define DPL_P0 0 +#define EN_DPL 2 +#define EN_ACK_PAY 1 +#define EN_DYN_ACK 0 + +/* Instruction Mnemonics */ +#define R_REGISTER 0x00 +#define W_REGISTER 0x20 +#define REGISTER_MASK 0x1F +#define ACTIVATE 0x50 +#define R_RX_PL_WID 0x60 +#define R_RX_PAYLOAD 0x61 +#define W_TX_PAYLOAD 0xA0 +#define W_ACK_PAYLOAD 0xA8 +#define FLUSH_TX 0xE1 +#define FLUSH_RX 0xE2 +#define REUSE_TX_PL 0xE3 +#define NOP 0xFF + +/* Non-P omissions */ +#define LNA_HCURR 0 + +/* P model memory Map */ +#define RPD 0x09 + +/* P model bit Mnemonics */ +#define RF_DR_LOW 5 +#define RF_DR_HIGH 3 +#define RF_PWR_LOW 1 +#define RF_PWR_HIGH 2