You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

400 lines
13 KiB

#include <CL/cl.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <string>
#include <fstream>
#include <random>
#include <ctime>
#include <SFML/Graphics.hpp>
#include <windows.h>
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include "Shader.hpp"
#define SUCCESS 0
#define FAILURE 1
float elap_time() {
static __int64 start = 0;
static __int64 frequency = 0;
if (start == 0) {
QueryPerformanceCounter((LARGE_INTEGER*)&start);
QueryPerformanceFrequency((LARGE_INTEGER*)&frequency);
return 0.0f;
}
__int64 counter = 0;
QueryPerformanceCounter((LARGE_INTEGER*)&counter);
return (float)((counter - start) / double(frequency));
}
// convert the kernel file into a string
int convertToString(const char *filename, std::string& s)
{
size_t size;
char* str;
std::fstream f(filename, (std::fstream::in | std::fstream::binary));
if(f.is_open())
{
size_t fileSize;
f.seekg(0, std::fstream::end);
size = fileSize = (size_t)f.tellg();
f.seekg(0, std::fstream::beg);
str = new char[size+1];
if(!str)
{
f.close();
return 0;
}
f.read(str, fileSize);
f.close();
str[size] = '\0';
s = str;
delete[] str;
return 0;
}
std::cout << "Error: failed to open file\n:" << filename << std::endl;
return FAILURE;
}
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode) {
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE);
}
int main(int argc, char* argv[])
{
int WINDOW_X = 1000;
int WINDOW_Y = 1000;
int GRID_WIDTH = WINDOW_X;
int GRID_HEIGHT = WINDOW_Y;
int WORKER_SIZE = 2000;
// ============================== OpenCL Setup ==================================================================
// Get the platforms
cl_uint numPlatforms;
cl_platform_id platform = NULL;
cl_int status = clGetPlatformIDs(0, NULL, &numPlatforms); // Retrieve the number of platforms
if (status != CL_SUCCESS) {
std::cout << "Error: Getting platforms!" << std::endl;
return FAILURE;
}
// Choose the first available platform
if(numPlatforms > 0) {
cl_platform_id* platforms = new cl_platform_id[numPlatforms];
status = clGetPlatformIDs(numPlatforms, platforms, NULL); // Now populate the array with the platforms
platform = platforms[0];
delete platforms;
}
cl_uint numDevices = 0;
cl_device_id *devices;
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &numDevices);
if (numDevices == 0) { //no GPU available.
std::cout << "No GPU device available." << std::endl;
std::cout << "Choose CPU as default device." << std::endl;
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, 0, NULL, &numDevices);
devices = new cl_device_id[numDevices];
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, numDevices, devices, NULL);
}
else {
devices = new cl_device_id[numDevices];
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, numDevices, devices, NULL);
}
cl_context context = clCreateContext(NULL,1, devices,NULL,NULL,NULL);
cl_command_queue commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL);
// ============================== Kernel Compilation, Setup ====================================================
// Read the kernel from the file to a string
const char *compute_kernel_filename = "conway_compute.cl";
const char *align_kernel_filename = "conway_align.cl";
std::string compute_kernel_string;
std::string align_kernel_string;
convertToString(compute_kernel_filename, compute_kernel_string);
convertToString(compute_kernel_filename, align_kernel_string);
// Create a program with the source
const char *compute_source = compute_kernel_string.c_str();
const char *align_source = align_kernel_string.c_str();
size_t compute_source_size[] = {strlen(compute_source)};
size_t align_source_size[] = { strlen(align_source) };
cl_program compute_program = clCreateProgramWithSource(context, 1, &compute_source, compute_source_size, NULL);
cl_program align_program = clCreateProgramWithSource(context, 1, &align_source, align_source_size, NULL);
// Build the compute program
status = clBuildProgram(compute_program, 1, devices, NULL, NULL, NULL);
if (status == CL_BUILD_PROGRAM_FAILURE) {
size_t log_size;
clGetProgramBuildInfo(compute_program, devices[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *log = new char[log_size];
clGetProgramBuildInfo(compute_program, devices[0], CL_PROGRAM_BUILD_LOG, log_size, log, NULL);
std::cout << log << std::endl;
}
// Build the align program
status = clBuildProgram(align_program, 1, devices, NULL, NULL, NULL);
if (status == CL_BUILD_PROGRAM_FAILURE) {
size_t log_size;
clGetProgramBuildInfo(align_program, devices[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *log = new char[log_size];
clGetProgramBuildInfo(align_program, devices[0], CL_PROGRAM_BUILD_LOG, log_size, log, NULL);
std::cout << log << std::endl;
}
// Now create the kernels
cl_kernel front_kernel = clCreateKernel(compute_program, "conway_compute", NULL);
cl_kernel back_kernel = clCreateKernel(align_program, "conway_align", NULL);
// ======================================= Setup OpenGL =======================================================
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
GLFWwindow* gl_window = glfwCreateWindow(GRID_WIDTH, GRID_HEIGHT, "GPU accelerated life", nullptr, nullptr);
glfwMakeContextCurrent(gl_window);
glfwSetKeyCallback(gl_window, key_callback);
glewExperimental = GL_TRUE;
glewInit();
glViewport(0, 0, GRID_WIDTH, GRID_HEIGHT);
glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
Shader ourShader("Z:\\VS_Projects\\Conway_OpenCL\\Conway_OpenCL\\vertex_shader.sh", "Z:\\VS_Projects\\Conway_OpenCL\\Conway_OpenCL\\fragment_shader.sh");
GLfloat vertices[] = {
// Positions // Colors // Texture Coords
1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // Top Right
1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // Bottom Right
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // Bottom Left
-1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f // Top Left
};
GLuint indices[] = {
0, 1, 3, // First Triangle
1, 2, 3 // Second Triangle
};
GLuint VBO, VAO, EBO;
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
glGenBuffers(1, &EBO);
// Bind the Vertex Array Object first, then bind and set vertex buffer(s) and attribute pointer(s).
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
// Position attribute
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
// Color attribute
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
// TexCoord attribute
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glBindVertexArray(0); // Unbind VAO
// ======================================= Setup grid =========================================================
// Setup the rng
std::mt19937 rng(time(NULL));
std::uniform_int_distribution<int> rgen(0, 4); // 25% chance
// Init the grids
unsigned char* front_grid = new unsigned char[GRID_WIDTH * GRID_HEIGHT];
for (int i = 0; i < GRID_WIDTH * GRID_HEIGHT; i++) {
if (rgen(rng) == 1) {
front_grid[i] = 1;
}
else {
front_grid[i] = 0;
}
}
unsigned char* back_grid = new unsigned char[GRID_WIDTH * GRID_HEIGHT];
for (int i = 0; i < GRID_WIDTH * GRID_HEIGHT; i++) {
back_grid[i] = front_grid[i];
}
// ====================================== Setup Rendering ==========================================================
unsigned char* pixel_array = new sf::Uint8[WINDOW_X * WINDOW_Y * 4];
for (int i = 0; i < GRID_WIDTH * GRID_HEIGHT * 4; i += 4) {
pixel_array[i] = 29; // R?
pixel_array[i + 1] = 70; // G?
pixel_array[i + 2] = 100; // B?
pixel_array[i + 3] = 200; // A?
}
GLuint texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
//////////////////////////
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_DECAL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_DECAL);
// when texture area is small, bilinear filter the closest mipmap
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
// when texture area is large, bilinear filter the first mipmap
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// texture should tile
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, GRID_WIDTH, GRID_HEIGHT, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixel_array);
glGenerateMipmap(GL_TEXTURE_2D);
delete pixel_array;
// ========================================= Setup the buffers ==================================================
int err = 0;
cl_mem frontBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, GRID_WIDTH * GRID_HEIGHT * sizeof(char), (void*)front_grid, &err);
cl_mem backBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, GRID_WIDTH * GRID_HEIGHT * sizeof(char), (void*)back_grid, &err);
//cl_mem pixelBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, GRID_WIDTH * GRID_HEIGHT * sizeof(char), (void*)pixel_array, &err);
cl_mem workerCountBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int), &WORKER_SIZE, &err);
cl_mem gridWidthBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int), &GRID_WIDTH, &err);
cl_mem gridHeightBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int), &GRID_HEIGHT, &err);
// Kernel args for front kernel
status = clSetKernelArg(front_kernel, 0, sizeof(cl_mem), (void *)&frontBuffer);
status = clSetKernelArg(front_kernel, 1, sizeof(cl_mem), (void *)&backBuffer);
//status = clSetKernelArg(front_kernel, 2, sizeof(cl_mem), (void *)&pixelBuffer);
status = clSetKernelArg(front_kernel, 3, sizeof(cl_mem), (void *)&workerCountBuffer);
status = clSetKernelArg(front_kernel, 4, sizeof(cl_mem), (void *)&gridWidthBuffer);
status = clSetKernelArg(front_kernel, 5, sizeof(cl_mem), (void *)&gridHeightBuffer);
// Flipped kernel args for the back kernel
status = clSetKernelArg(back_kernel, 0, sizeof(cl_mem), (void *)&backBuffer); // Flipped
status = clSetKernelArg(back_kernel, 1, sizeof(cl_mem), (void *)&frontBuffer); // Flipped
//status = clSetKernelArg(back_kernel, 2, sizeof(cl_mem), (void *)&pixelBuffer);
status = clSetKernelArg(back_kernel, 3, sizeof(cl_mem), (void *)&workerCountBuffer);
status = clSetKernelArg(back_kernel, 4, sizeof(cl_mem), (void *)&gridWidthBuffer);
status = clSetKernelArg(back_kernel, 5, sizeof(cl_mem), (void *)&gridHeightBuffer);
// ===================================== Loop ==================================================================
while (!glfwWindowShouldClose(gl_window)) {
//glfwPollEvents();
//glClear(GL_COLOR_BUFFER_BIT);
// ======================================= OpenCL Shtuff ===================================================
// Update the data in GPU memory
//status = clEnqueueWriteBuffer(commandQueue, frontBuffer, CL_TRUE, 0, GRID_WIDTH * GRID_HEIGHT * 2 * sizeof(char), (void*)grid, NULL, 0, NULL);
// Work size, for each y line
size_t global_work_size[1] = { WORKER_SIZE };
status = clEnqueueNDRangeKernel(commandQueue, back_kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
//status = clEnqueueReadBuffer(commandQueue, pixelBuffer, CL_TRUE, 0, GRID_WIDTH * GRID_HEIGHT * 4 * sizeof(unsigned char), (void*)pixel_array, 0, NULL, NULL);
// ======================================= Rendering Shtuff =================================================
glfwPollEvents();
// Render
// Clear the colorbuffer
glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
glUniform1i(glGetUniformLocation(ourShader.Program, "ourTexture1"), 0);
// Draw the triangle
ourShader.Use();
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
// Swap the screen buffers
glfwSwapBuffers(gl_window);
}
glfwTerminate();
// Release the buffers
status = clReleaseMemObject(frontBuffer);
status = clReleaseMemObject(backBuffer);
//status = clReleaseMemObject(pixelBuffer);
status = clReleaseMemObject(workerCountBuffer);
status = clReleaseMemObject(gridWidthBuffer);
status = clReleaseMemObject(gridHeightBuffer);
// And the program stuff
status = clReleaseKernel(front_kernel);
status = clReleaseProgram(compute_program);
status = clReleaseProgram(align_program);
status = clReleaseCommandQueue(commandQueue);
status = clReleaseContext(context);
if (devices != NULL)
{
delete devices;
devices = NULL;
}
return SUCCESS;
}