#include #include #include #include #include #include #include #include #include #include #define SUCCESS 0 #define FAILURE 1 using namespace std; /* convert the kernel file into a string */ int convertToString(const char *filename, std::string& s) { size_t size; char* str; std::fstream f(filename, (std::fstream::in | std::fstream::binary)); if(f.is_open()) { size_t fileSize; f.seekg(0, std::fstream::end); size = fileSize = (size_t)f.tellg(); f.seekg(0, std::fstream::beg); str = new char[size+1]; if(!str) { f.close(); return 0; } f.read(str, fileSize); f.close(); str[size] = '\0'; s = str; delete[] str; return 0; } cout<<"Error: failed to open file\n:"< rgen(0, 4); // 25% chance char* grid = new char[1000 * 1000 * 2]; for (int i = 0; i < 1000 * 1000 * 2; i += 2) { if (rgen(rng) == 1) { grid[i] = 1; grid[i + 1] = 1; } else { grid[i] = 0; grid[i + 1] = 0; } } /*Step1: Getting platforms and choose an available one.*/ cl_uint numPlatforms; //the NO. of platforms cl_platform_id platform = NULL; //the chosen platform cl_int status = clGetPlatformIDs(0, NULL, &numPlatforms); if (status != CL_SUCCESS) { cout << "Error: Getting platforms!" << endl; return FAILURE; } /*For clarity, choose the first available platform. */ if(numPlatforms > 0) { cl_platform_id* platforms = (cl_platform_id* )malloc(numPlatforms* sizeof(cl_platform_id)); status = clGetPlatformIDs(numPlatforms, platforms, NULL); platform = platforms[0]; free(platforms); } /*Step 2:Query the platform and choose the first GPU device if has one.Otherwise use the CPU as device.*/ cl_uint numDevices = 0; cl_device_id *devices; status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &numDevices); if (numDevices == 0) //no GPU available. { cout << "No GPU device available." << endl; cout << "Choose CPU as default device." << endl; status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, 0, NULL, &numDevices); devices = (cl_device_id*)malloc(numDevices * sizeof(cl_device_id)); status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, numDevices, devices, NULL); } else { devices = (cl_device_id*)malloc(numDevices * sizeof(cl_device_id)); status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, numDevices, devices, NULL); } /*Step 3: Create context.*/ cl_context context = clCreateContext(NULL,1, devices,NULL,NULL,NULL); /*Step 4: Creating command queue associate with the context.*/ cl_command_queue commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL); /*Step 5: Create program object */ const char *filename = "HelloWorld_Kernel.cl"; string sourceStr; status = convertToString(filename, sourceStr); const char *source = sourceStr.c_str(); size_t sourceSize[] = {strlen(source)}; cl_program program = clCreateProgramWithSource(context, 1, &source, sourceSize, NULL); /*Step 6: Build program. */ status=clBuildProgram(program, 1,devices,NULL,NULL,NULL); /*Step 7: Initial input,output for the host and create memory objects for the kernel*/ const char* input = "GdkknVnqkc"; size_t strlength = strlen(input); cout << "input string:" << endl; cout << input << endl; char *output = (char*) malloc(strlength + 1); cl_mem inputBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, (strlength + 1) * sizeof(char),(void *) input, NULL); cl_mem outputBuffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY , (strlength + 1) * sizeof(char), NULL, NULL); /*Step 8: Create kernel object */ cl_kernel kernel = clCreateKernel(program,"helloworld", NULL); /*Step 9: Sets Kernel arguments.*/ status = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&inputBuffer); status = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&outputBuffer); // ======================================= START SFML ========================================================== // Spites for drawing, probably where the biggest slowdown is sf::RectangleShape live_node; live_node.setFillColor(sf::Color(145, 181, 207)); live_node.setSize(sf::Vector2f(WINDOW_X / Node::x_bound, WINDOW_Y / Node::y_bound)); // Init window, and loop data sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "Classic Games"); float step_size = 0.0005f; double frame_time = 0.0, elapsed_time = 0.0, delta_time = 0.0, accumulator_time = 0.0, current_time = 0.0; int frame_count = 0; std::stack thread_stack; while (window.isOpen()) { sf::Event event; while (window.pollEvent(event)) { if (event.type == sf::Event::Closed) window.close(); } // Time keeping elapsed_time = elap_time(); delta_time = elapsed_time - current_time; current_time = elapsed_time; if (delta_time > 0.02f) delta_time = 0.02f; accumulator_time += delta_time; while ((accumulator_time - step_size) >= step_size) { accumulator_time -= step_size; // Do nothing, FPS tied update() } // Implicit dead node color window.clear(sf::Color(49, 68, 72)); for (int i = 0; i < 12; i++) { thread_stack.emplace(updateRange, &node_vec, (node_vec.size() / 12)* i, (node_vec.size() / 12)* (i + 1)); } while (!thread_stack.empty()) { thread_stack.top().join(); thread_stack.pop(); } //for (int i = 0; i < node_vec.size(); i++) { // node_vec.at(i).Update(&node_vec); //} for (int i = 0; i < node_vec.size(); i++) { node_vec[i].ShiftState(); } for (int i = 0; i < node_vec.size(); i++) { if (node_vec.at(i).CurrentState() == true) { live_node.setPosition((i % Node::x_bound) * live_node.getGlobalBounds().width, (i / Node::x_bound) * live_node.getGlobalBounds().height); window.draw(live_node); } else { //dead_node.setPosition(i % Node::x_bound * dead_node.getGlobalBounds().width, i / Node::x_bound * dead_node.getGlobalBounds().height); //window.draw(live_node); } } frame_count++; window.display(); // ======================================= END SFML ========================================================== /*Step 10: Running the kernel.*/ size_t global_work_size[1] = {strlength}; status = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL); /*Step 11: Read the cout put back to host memory.*/ status = clEnqueueReadBuffer(commandQueue, outputBuffer, CL_TRUE, 0, strlength * sizeof(char), output, 0, NULL, NULL); output[strlength] = '\0'; //Add the terminal character to the end of output. cout << "\noutput string:" << endl; cout << output << endl; /*Step 12: Clean the resources.*/ status = clReleaseKernel(kernel); //Release kernel. status = clReleaseProgram(program); //Release the program object. status = clReleaseMemObject(inputBuffer); //Release mem object. status = clReleaseMemObject(outputBuffer); status = clReleaseCommandQueue(commandQueue); //Release Command queue. status = clReleaseContext(context); //Release context. if (output != NULL) { free(output); output = NULL; } if (devices != NULL) { free(devices); devices = NULL; } std::cout<<"Passed!\n"; return SUCCESS; }