#include #include #include #include #include #include #include #include #include #include #include #define SUCCESS 0 #define FAILURE 1 float elap_time() { static __int64 start = 0; static __int64 frequency = 0; if (start == 0) { QueryPerformanceCounter((LARGE_INTEGER*)&start); QueryPerformanceFrequency((LARGE_INTEGER*)&frequency); return 0.0f; } __int64 counter = 0; QueryPerformanceCounter((LARGE_INTEGER*)&counter); return (float)((counter - start) / double(frequency)); } /* convert the kernel file into a string */ int convertToString(const char *filename, std::string& s) { size_t size; char* str; std::fstream f(filename, (std::fstream::in | std::fstream::binary)); if(f.is_open()) { size_t fileSize; f.seekg(0, std::fstream::end); size = fileSize = (size_t)f.tellg(); f.seekg(0, std::fstream::beg); str = new char[size+1]; if(!str) { f.close(); return 0; } f.read(str, fileSize); f.close(); str[size] = '\0'; s = str; delete[] str; return 0; } std::cout << "Error: failed to open file\n:" << filename << std::endl; return FAILURE; } int main(int argc, char* argv[]) { int WINDOW_X = 1000; int WINDOW_Y = 1000; int GRID_WIDTH = 1000; int GRID_HEIGHT = 1000; int WORKER_SIZE = 1000; // ============================== OpenCL Setup ================================================================== /*Step1: Getting platforms and choose an available one.*/ cl_uint numPlatforms; //the NO. of platforms cl_platform_id platform = NULL; //the chosen platform cl_int status = clGetPlatformIDs(0, NULL, &numPlatforms); if (status != CL_SUCCESS) { std::cout << "Error: Getting platforms!" << std::endl; return FAILURE; } // Choose the first available platform if(numPlatforms > 0) { cl_platform_id* platforms = (cl_platform_id* )malloc(numPlatforms* sizeof(cl_platform_id)); status = clGetPlatformIDs(numPlatforms, platforms, NULL); platform = platforms[0]; free(platforms); } /*Step 2:Query the platform and choose the first GPU device if has one.Otherwise use the CPU as device.*/ cl_uint numDevices = 0; cl_device_id *devices; status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &numDevices); if (numDevices == 0) { //no GPU available. std::cout << "No GPU device available." << std::endl; std::cout << "Choose CPU as default device." << std::endl; status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, 0, NULL, &numDevices); devices = (cl_device_id*)malloc(numDevices * sizeof(cl_device_id)); status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, numDevices, devices, NULL); } else { devices = (cl_device_id*)malloc(numDevices * sizeof(cl_device_id)); status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, numDevices, devices, NULL); } /*Step 3: Create context.*/ cl_context context = clCreateContext(NULL,1, devices,NULL,NULL,NULL); /*Step 4: Creating command queue associate with the context.*/ cl_command_queue commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL); // ============================== Kernel Compilation, Setup ==================================================== /*Step 5: Create program object */ const char *filename = "HelloWorld_Kernel.cl"; std::string sourceStr; status = convertToString(filename, sourceStr); const char *source = sourceStr.c_str(); size_t sourceSize[] = {strlen(source)}; cl_program program = clCreateProgramWithSource(context, 1, &source, sourceSize, NULL); // Build program and set kernel status=clBuildProgram(program, 1,devices,NULL,NULL,NULL); if (status == CL_BUILD_PROGRAM_FAILURE) { // Determine the size of the log size_t log_size; clGetProgramBuildInfo(program, devices[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); // Allocate memory for the log char *log = (char *)malloc(log_size); // Get the log clGetProgramBuildInfo(program, devices[0], CL_PROGRAM_BUILD_LOG, log_size, log, NULL); // Print the log printf("%s\n", log); } cl_kernel kernel = clCreateKernel(program, "helloworld", NULL); // ======================================= Setup grid ========================================================= // Setup the rng std::mt19937 rng(time(NULL)); std::uniform_int_distribution rgen(0, 4); // 25% chance // Init the grid char* grid = new char[GRID_WIDTH * GRID_HEIGHT* 2]; for (int i = 0; i < 1000 * 1000 * 2; i += 2) { if (rgen(rng) == 1) { grid[i] = 1; grid[i + 1] = 1; } else { grid[i] = 0; grid[i + 1] = 0; } } // ====================================== Setup SFML ========================================================== // Spites for drawing, probably where the biggest slowdown is sf::RectangleShape live_node; live_node.setFillColor(sf::Color(145, 181, 207)); live_node.setSize(sf::Vector2f(1, 1)); // Init window, and loop data sf::RenderWindow window(sf::VideoMode(GRID_WIDTH, GRID_HEIGHT), "Classic Games"); float step_size = 0.0005f; double frame_time = 0.0, elapsed_time = 0.0, delta_time = 0.0, accumulator_time = 0.0, current_time = 0.0; int frame_count = 0; int err = 0; // ===================================== Loop ================================================================== while (window.isOpen()) { sf::Event event; while (window.pollEvent(event)) { if (event.type == sf::Event::Closed) window.close(); } // Time keeping //elapsed_time = elap_time(); delta_time = elapsed_time - current_time; current_time = elapsed_time; if (delta_time > 0.02f) delta_time = 0.02f; accumulator_time += delta_time; while ((accumulator_time - step_size) >= step_size) { accumulator_time -= step_size; // Do nothing, FPS tied update() } // ======================================= OpenCL Shtuff ============================================= // Implicit dead node color window.clear(sf::Color(49, 68, 72)); cl_mem inputBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, GRID_WIDTH * GRID_HEIGHT * 2 * sizeof(char), (void*)grid, &err); cl_mem workerCountBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int), &WORKER_SIZE, &err); cl_mem gridWidthBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int), &GRID_WIDTH, &err); cl_mem gridHeightBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int), &GRID_HEIGHT, &err); status = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&inputBuffer); status = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&workerCountBuffer); status = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&gridWidthBuffer); status = clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&gridHeightBuffer); //status = clEnqueueWriteBuffer(commandQueue, inputBuffer, CL_TRUE, 0, GRID_WIDTH * GRID_HEIGHT * 2 * sizeof(char), (void*)grid, NULL, 0, NULL); // One work item per group, don't really know if this impacts performance size_t global_work_size[1] = { GRID_HEIGHT }; // Run the kernel status = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL); // Get output, put back into grid //cl_mem outputBuffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY, GRID_WIDTH * GRID_HEIGHT * 2 * sizeof(char), grid, NULL); status = clEnqueueReadBuffer(commandQueue, inputBuffer, CL_TRUE, 0, GRID_WIDTH * GRID_HEIGHT * 2 * sizeof(char), (void*)grid, 0, NULL, NULL); // Temporary status = clReleaseMemObject(inputBuffer); status = clReleaseMemObject(workerCountBuffer); status = clReleaseMemObject(gridWidthBuffer); status = clReleaseMemObject(gridHeightBuffer); // Swap status's for (int i = 0; i < GRID_WIDTH * GRID_HEIGHT * 2; i += 2) { grid[i] = grid[i + 1]; } for (int i = 0; i < GRID_WIDTH * GRID_HEIGHT * 2; i += 2) { if (grid[i] == 1) { live_node.setPosition(sf::Vector2f(((i / 2) % GRID_WIDTH), (i / 2) / GRID_WIDTH)); window.draw(live_node); } } frame_count++; window.display(); } /*Step 12: Clean the resources.*/ status = clReleaseKernel(kernel); //Release kernel. status = clReleaseProgram(program); //Release the program object. status = clReleaseCommandQueue(commandQueue); //Release Command queue. status = clReleaseContext(context); //Release context. if (devices != NULL) { free(devices); devices = NULL; } return SUCCESS; }