master
mitchellhansen 4 years ago
commit 82b68101b2

@ -0,0 +1,3 @@
# Can I create the 4-5 interconnected components for a minimal viable game engine?
probably not

@ -0,0 +1,13 @@
# shadow
This animated example demonstrates shadow mapping.
## To Run
```
cargo run --example shadow
```
## Screenshots
![Shadow mapping](./screenshot.png)

@ -0,0 +1,16 @@
#version 450
layout(location = 0) in ivec4 a_Pos;
layout(set = 0, binding = 0) uniform Globals {
mat4 u_ViewProj;
};
layout(set = 1, binding = 0) uniform Entity {
mat4 u_World;
vec4 u_Color;
};
void main() {
gl_Position = u_ViewProj * u_World * vec4(a_Pos);
}

Binary file not shown.

@ -0,0 +1,64 @@
#version 450
const int MAX_LIGHTS = 10;
layout(location = 0) in vec3 v_Normal;
layout(location = 1) in vec4 v_Position;
layout(location = 0) out vec4 o_Target;
struct Light {
mat4 proj;
vec4 pos;
vec4 color;
};
layout(set = 0, binding = 0) uniform Globals {
mat4 u_ViewProj;
uvec4 u_NumLights;
};
layout(set = 0, binding = 1) uniform Lights {
Light u_Lights[MAX_LIGHTS];
};
layout(set = 0, binding = 2) uniform texture2DArray t_Shadow;
layout(set = 0, binding = 3) uniform samplerShadow s_Shadow;
layout(set = 1, binding = 0) uniform Entity {
mat4 u_World;
vec4 u_Color;
};
float fetch_shadow(int light_id, vec4 homogeneous_coords) {
if (homogeneous_coords.w <= 0.0) {
return 1.0;
}
// compensate for the Y-flip difference between the NDC and texture coordinates
const vec2 flip_correction = vec2(0.5, -0.5);
// compute texture coordinates for shadow lookup
vec4 light_local = vec4(
homogeneous_coords.xy * flip_correction/homogeneous_coords.w + 0.5,
light_id,
homogeneous_coords.z / homogeneous_coords.w
);
// do the lookup, using HW PCF and comparison
return texture(sampler2DArrayShadow(t_Shadow, s_Shadow), light_local);
}
void main() {
vec3 normal = normalize(v_Normal);
vec3 ambient = vec3(0.05, 0.05, 0.05);
// accumulate color
vec3 color = ambient;
for (int i=0; i<int(u_NumLights.x) && i<MAX_LIGHTS; ++i) {
Light light = u_Lights[i];
// project into the light space
float shadow = fetch_shadow(i, light.proj * v_Position);
// compute Lambertian diffuse term
vec3 light_dir = normalize(light.pos.xyz - v_Position.xyz);
float diffuse = max(0.0, dot(normal, light_dir));
// add light contribution
color += shadow * diffuse * light.color.xyz;
}
// multiply the light by material color
o_Target = vec4(color, 1.0) * u_Color;
}

Binary file not shown.

@ -0,0 +1,22 @@
#version 450
layout(location = 0) in ivec4 a_Pos;
layout(location = 1) in ivec4 a_Normal;
layout(location = 0) out vec3 v_Normal;
layout(location = 1) out vec4 v_Position;
layout(set = 0, binding = 0) uniform Globals {
mat4 u_ViewProj;
uvec4 u_NumLights;
};
layout(set = 1, binding = 0) uniform Entity {
mat4 u_World;
vec4 u_Color;
};
void main() {
v_Normal = mat3(u_World) * vec3(a_Normal.xyz);
v_Position = u_World * vec4(a_Pos);
gl_Position = u_ViewProj * v_Position;
}

Binary file not shown.

@ -0,0 +1,844 @@
use std::{iter, mem, num::NonZeroU32, ops::Range, rc::Rc};
#[path = "../framework.rs"]
mod framework;
use bytemuck::{Pod, Zeroable};
use wgpu::util::DeviceExt;
#[repr(C)]
#[derive(Clone, Copy, Pod, Zeroable)]
struct Vertex {
_pos: [i8; 4],
_normal: [i8; 4],
}
fn vertex(pos: [i8; 3], nor: [i8; 3]) -> Vertex {
Vertex {
_pos: [pos[0], pos[1], pos[2], 1],
_normal: [nor[0], nor[1], nor[2], 0],
}
}
fn create_cube() -> (Vec<Vertex>, Vec<u16>) {
let vertex_data = [
// top (0, 0, 1)
vertex([-1, -1, 1], [0, 0, 1]),
vertex([1, -1, 1], [0, 0, 1]),
vertex([1, 1, 1], [0, 0, 1]),
vertex([-1, 1, 1], [0, 0, 1]),
// bottom (0, 0, -1)
vertex([-1, 1, -1], [0, 0, -1]),
vertex([1, 1, -1], [0, 0, -1]),
vertex([1, -1, -1], [0, 0, -1]),
vertex([-1, -1, -1], [0, 0, -1]),
// right (1, 0, 0)
vertex([1, -1, -1], [1, 0, 0]),
vertex([1, 1, -1], [1, 0, 0]),
vertex([1, 1, 1], [1, 0, 0]),
vertex([1, -1, 1], [1, 0, 0]),
// left (-1, 0, 0)
vertex([-1, -1, 1], [-1, 0, 0]),
vertex([-1, 1, 1], [-1, 0, 0]),
vertex([-1, 1, -1], [-1, 0, 0]),
vertex([-1, -1, -1], [-1, 0, 0]),
// front (0, 1, 0)
vertex([1, 1, -1], [0, 1, 0]),
vertex([-1, 1, -1], [0, 1, 0]),
vertex([-1, 1, 1], [0, 1, 0]),
vertex([1, 1, 1], [0, 1, 0]),
// back (0, -1, 0)
vertex([1, -1, 1], [0, -1, 0]),
vertex([-1, -1, 1], [0, -1, 0]),
vertex([-1, -1, -1], [0, -1, 0]),
vertex([1, -1, -1], [0, -1, 0]),
];
let index_data: &[u16] = &[
0, 1, 2, 2, 3, 0, // top
4, 5, 6, 6, 7, 4, // bottom
8, 9, 10, 10, 11, 8, // right
12, 13, 14, 14, 15, 12, // left
16, 17, 18, 18, 19, 16, // front
20, 21, 22, 22, 23, 20, // back
];
(vertex_data.to_vec(), index_data.to_vec())
}
fn create_plane(size: i8) -> (Vec<Vertex>, Vec<u16>) {
let vertex_data = [
vertex([size, -size, 0], [0, 0, 1]),
vertex([size, size, 0], [0, 0, 1]),
vertex([-size, -size, 0], [0, 0, 1]),
vertex([-size, size, 0], [0, 0, 1]),
];
let index_data: &[u16] = &[0, 1, 2, 2, 1, 3];
(vertex_data.to_vec(), index_data.to_vec())
}
struct Entity {
mx_world: cgmath::Matrix4<f32>,
rotation_speed: f32,
color: wgpu::Color,
vertex_buf: Rc<wgpu::Buffer>,
index_buf: Rc<wgpu::Buffer>,
index_format: wgpu::IndexFormat,
index_count: usize,
uniform_offset: wgpu::DynamicOffset,
}
struct Light {
pos: cgmath::Point3<f32>,
color: wgpu::Color,
fov: f32,
depth: Range<f32>,
target_view: wgpu::TextureView,
}
#[repr(C)]
#[derive(Clone, Copy, Pod, Zeroable)]
struct LightRaw {
proj: [[f32; 4]; 4],
pos: [f32; 4],
color: [f32; 4],
}
impl Light {
fn to_raw(&self) -> LightRaw {
use cgmath::{Deg, EuclideanSpace, Matrix4, PerspectiveFov, Point3, Vector3};
let mx_view = Matrix4::look_at(self.pos, Point3::origin(), Vector3::unit_z());
let projection = PerspectiveFov {
fovy: Deg(self.fov).into(),
aspect: 1.0,
near: self.depth.start,
far: self.depth.end,
};
let mx_correction = framework::OPENGL_TO_WGPU_MATRIX;
let mx_view_proj =
mx_correction * cgmath::Matrix4::from(projection.to_perspective()) * mx_view;
LightRaw {
proj: *mx_view_proj.as_ref(),
pos: [self.pos.x, self.pos.y, self.pos.z, 1.0],
color: [
self.color.r as f32,
self.color.g as f32,
self.color.b as f32,
1.0,
],
}
}
}
#[repr(C)]
#[derive(Clone, Copy, Pod, Zeroable)]
struct ForwardUniforms {
proj: [[f32; 4]; 4],
num_lights: [u32; 4],
}
#[repr(C)]
#[derive(Clone, Copy, Pod, Zeroable)]
struct EntityUniforms {
model: [[f32; 4]; 4],
color: [f32; 4],
}
#[repr(C)]
struct ShadowUniforms {
proj: [[f32; 4]; 4],
}
struct Pass {
pipeline: wgpu::RenderPipeline,
bind_group: wgpu::BindGroup,
uniform_buf: wgpu::Buffer,
}
struct Example {
entities: Vec<Entity>,
lights: Vec<Light>,
lights_are_dirty: bool,
shadow_pass: Pass,
forward_pass: Pass,
forward_depth: wgpu::TextureView,
entity_bind_group: wgpu::BindGroup,
light_uniform_buf: wgpu::Buffer,
entity_uniform_buf: wgpu::Buffer,
}
impl Example {
const MAX_LIGHTS: usize = 10;
const SHADOW_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
const SHADOW_SIZE: wgpu::Extent3d = wgpu::Extent3d {
width: 512,
height: 512,
depth: Self::MAX_LIGHTS as u32,
};
const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
fn generate_matrix(aspect_ratio: f32) -> cgmath::Matrix4<f32> {
let mx_projection = cgmath::perspective(cgmath::Deg(45f32), aspect_ratio, 1.0, 20.0);
let mx_view = cgmath::Matrix4::look_at(
cgmath::Point3::new(3.0f32, -10.0, 6.0),
cgmath::Point3::new(0f32, 0.0, 0.0),
cgmath::Vector3::unit_z(),
);
let mx_correction = framework::OPENGL_TO_WGPU_MATRIX;
mx_correction * mx_projection * mx_view
}
}
impl framework::Example for Example {
fn optional_features() -> wgpu::Features {
wgpu::Features::DEPTH_CLAMPING
}
fn init(
sc_desc: &wgpu::SwapChainDescriptor,
device: &wgpu::Device,
_queue: &wgpu::Queue,
) -> Self {
// Create the vertex and index buffers
let vertex_size = mem::size_of::<Vertex>();
let (cube_vertex_data, cube_index_data) = create_cube();
let cube_vertex_buf = Rc::new(device.create_buffer_init(
&wgpu::util::BufferInitDescriptor {
label: Some("Cubes Vertex Buffer"),
contents: bytemuck::cast_slice(&cube_vertex_data),
usage: wgpu::BufferUsage::VERTEX,
},
));
let cube_index_buf = Rc::new(device.create_buffer_init(
&wgpu::util::BufferInitDescriptor {
label: Some("Cubes Index Buffer"),
contents: bytemuck::cast_slice(&cube_index_data),
usage: wgpu::BufferUsage::INDEX,
},
));
let (plane_vertex_data, plane_index_data) = create_plane(7);
let plane_vertex_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Plane Vertex Buffer"),
contents: bytemuck::cast_slice(&plane_vertex_data),
usage: wgpu::BufferUsage::VERTEX,
});
let plane_index_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Plane Index Buffer"),
contents: bytemuck::cast_slice(&plane_index_data),
usage: wgpu::BufferUsage::INDEX,
});
struct CubeDesc {
offset: cgmath::Vector3<f32>,
angle: f32,
scale: f32,
rotation: f32,
}
let cube_descs = [
CubeDesc {
offset: cgmath::vec3(-2.0, -2.0, 2.0),
angle: 10.0,
scale: 0.7,
rotation: 0.1,
},
CubeDesc {
offset: cgmath::vec3(2.0, -2.0, 2.0),
angle: 50.0,
scale: 1.3,
rotation: 0.2,
},
CubeDesc {
offset: cgmath::vec3(-2.0, 2.0, 2.0),
angle: 140.0,
scale: 1.1,
rotation: 0.3,
},
CubeDesc {
offset: cgmath::vec3(2.0, 2.0, 2.0),
angle: 210.0,
scale: 0.9,
rotation: 0.4,
},
];
let entity_uniform_size = mem::size_of::<EntityUniforms>() as wgpu::BufferAddress;
let num_entities = 1 + cube_descs.len() as wgpu::BufferAddress;
assert!(entity_uniform_size <= wgpu::BIND_BUFFER_ALIGNMENT);
//Note: dynamic offsets also have to be aligned to `BIND_BUFFER_ALIGNMENT`.
let entity_uniform_buf = device.create_buffer(&wgpu::BufferDescriptor {
label: None,
size: num_entities * wgpu::BIND_BUFFER_ALIGNMENT,
usage: wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
mapped_at_creation: false,
});
let index_format = wgpu::IndexFormat::Uint16;
let mut entities = vec![{
use cgmath::SquareMatrix;
Entity {
mx_world: cgmath::Matrix4::identity(),
rotation_speed: 0.0,
color: wgpu::Color::WHITE,
vertex_buf: Rc::new(plane_vertex_buf),
index_buf: Rc::new(plane_index_buf),
index_format,
index_count: plane_index_data.len(),
uniform_offset: 0,
}
}];
for (i, cube) in cube_descs.iter().enumerate() {
use cgmath::{Decomposed, Deg, InnerSpace, Quaternion, Rotation3};
let transform = Decomposed {
disp: cube.offset.clone(),
rot: Quaternion::from_axis_angle(cube.offset.normalize(), Deg(cube.angle)),
scale: cube.scale,
};
entities.push(Entity {
mx_world: cgmath::Matrix4::from(transform),
rotation_speed: cube.rotation,
color: wgpu::Color::GREEN,
vertex_buf: Rc::clone(&cube_vertex_buf),
index_buf: Rc::clone(&cube_index_buf),
index_format,
index_count: cube_index_data.len(),
uniform_offset: ((i + 1) * wgpu::BIND_BUFFER_ALIGNMENT as usize) as _,
});
}
let local_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: wgpu::BufferSize::new(entity_uniform_size),
},
count: None,
}],
label: None,
});
let entity_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &local_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer {
buffer: &entity_uniform_buf,
offset: 0,
size: wgpu::BufferSize::new(entity_uniform_size),
},
}],
label: None,
});
// Create other resources
let shadow_sampler = device.create_sampler(&wgpu::SamplerDescriptor {
label: Some("shadow"),
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Nearest,
compare: Some(wgpu::CompareFunction::LessEqual),
..Default::default()
});
let shadow_texture = device.create_texture(&wgpu::TextureDescriptor {
size: Self::SHADOW_SIZE,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::SHADOW_FORMAT,
usage: wgpu::TextureUsage::RENDER_ATTACHMENT | wgpu::TextureUsage::SAMPLED,
label: None,
});
let shadow_view = shadow_texture.create_view(&wgpu::TextureViewDescriptor::default());
let mut shadow_target_views = (0..2)
.map(|i| {
Some(shadow_texture.create_view(&wgpu::TextureViewDescriptor {
label: Some("shadow"),
format: None,
dimension: Some(wgpu::TextureViewDimension::D2),
aspect: wgpu::TextureAspect::All,
base_mip_level: 0,
level_count: None,
base_array_layer: i as u32,
array_layer_count: NonZeroU32::new(1),
}))
})
.collect::<Vec<_>>();
let lights = vec![
Light {
pos: cgmath::Point3::new(7.0, -5.0, 10.0),
color: wgpu::Color {
r: 0.5,
g: 1.0,
b: 0.5,
a: 1.0,
},
fov: 60.0,
depth: 1.0..20.0,
target_view: shadow_target_views[0].take().unwrap(),
},
Light {
pos: cgmath::Point3::new(-5.0, 7.0, 10.0),
color: wgpu::Color {
r: 1.0,
g: 0.5,
b: 0.5,
a: 1.0,
},
fov: 45.0,
depth: 1.0..20.0,
target_view: shadow_target_views[1].take().unwrap(),
},
];
let light_uniform_size =
(Self::MAX_LIGHTS * mem::size_of::<LightRaw>()) as wgpu::BufferAddress;
let light_uniform_buf = device.create_buffer(&wgpu::BufferDescriptor {
label: None,
size: light_uniform_size,
usage: wgpu::BufferUsage::UNIFORM
| wgpu::BufferUsage::COPY_SRC
| wgpu::BufferUsage::COPY_DST,
mapped_at_creation: false,
});
let vertex_attr = wgpu::vertex_attr_array![0 => Char4, 1 => Char4];
let vb_desc = wgpu::VertexBufferDescriptor {
stride: vertex_size as wgpu::BufferAddress,
step_mode: wgpu::InputStepMode::Vertex,
attributes: &vertex_attr,
};
let shadow_pass = {
let uniform_size = mem::size_of::<ShadowUniforms>() as wgpu::BufferAddress;
// Create pipeline layout
let bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: None,
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0, // global
visibility: wgpu::ShaderStage::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: wgpu::BufferSize::new(uniform_size),
},
count: None,
}],
});
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("shadow"),
bind_group_layouts: &[&bind_group_layout, &local_bind_group_layout],
push_constant_ranges: &[],
});
let uniform_buf = device.create_buffer(&wgpu::BufferDescriptor {
label: None,
size: uniform_size,
usage: wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
mapped_at_creation: false,
});
// Create bind group
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: uniform_buf.as_entire_binding(),
}],
label: None,
});
// Create the render pipeline
let vs_module = device.create_shader_module(&wgpu::include_spirv!("bake.vert.spv"));
let pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("shadow"),
layout: Some(&pipeline_layout),
vertex_stage: wgpu::ProgrammableStageDescriptor {
module: &vs_module,
entry_point: "main",
},
fragment_stage: None,
rasterization_state: Some(wgpu::RasterizationStateDescriptor {
front_face: wgpu::FrontFace::Ccw,
cull_mode: wgpu::CullMode::Back,
polygon_mode: wgpu::PolygonMode::Fill,
depth_bias: 2, // corresponds to bilinear filtering
depth_bias_slope_scale: 2.0,
depth_bias_clamp: 0.0,
clamp_depth: device.features().contains(wgpu::Features::DEPTH_CLAMPING),
}),
primitive_topology: wgpu::PrimitiveTopology::TriangleList,
color_states: &[],
depth_stencil_state: Some(wgpu::DepthStencilStateDescriptor {
format: Self::SHADOW_FORMAT,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::LessEqual,
stencil: wgpu::StencilStateDescriptor::default(),
}),
vertex_state: wgpu::VertexStateDescriptor {
index_format: Some(index_format),
vertex_buffers: &[vb_desc.clone()],
},
sample_count: 1,
sample_mask: !0,
alpha_to_coverage_enabled: false,
});
Pass {
pipeline,
bind_group,
uniform_buf,
}
};
let forward_pass = {
// Create pipeline layout
let bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0, // global
visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: wgpu::BufferSize::new(mem::size_of::<
ForwardUniforms,
>(
)
as _),
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1, // lights
visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: wgpu::BufferSize::new(light_uniform_size),
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 2,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
sample_type: wgpu::TextureSampleType::Depth,
view_dimension: wgpu::TextureViewDimension::D2Array,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 3,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Sampler {
comparison: true,
filtering: false,
},
count: None,
},
],
label: None,
});
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("main"),
bind_group_layouts: &[&bind_group_layout, &local_bind_group_layout],
push_constant_ranges: &[],
});
let mx_total = Self::generate_matrix(sc_desc.width as f32 / sc_desc.height as f32);
let forward_uniforms = ForwardUniforms {
proj: *mx_total.as_ref(),
num_lights: [lights.len() as u32, 0, 0, 0],
};
let uniform_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Uniform Buffer"),
contents: bytemuck::bytes_of(&forward_uniforms),
usage: wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
});
// Create bind group
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: uniform_buf.as_entire_binding(),
},
wgpu::BindGroupEntry {
binding: 1,
resource: light_uniform_buf.as_entire_binding(),
},
wgpu::BindGroupEntry {
binding: 2,
resource: wgpu::BindingResource::TextureView(&shadow_view),
},
wgpu::BindGroupEntry {
binding: 3,
resource: wgpu::BindingResource::Sampler(&shadow_sampler),
},
],
label: None,
});
// Create the render pipeline
let vs_module = device.create_shader_module(&wgpu::include_spirv!("forward.vert.spv"));
let fs_module = device.create_shader_module(&wgpu::include_spirv!("forward.frag.spv"));
let pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("main"),
layout: Some(&pipeline_layout),
vertex_stage: wgpu::ProgrammableStageDescriptor {
module: &vs_module,
entry_point: "main",
},
fragment_stage: Some(wgpu::ProgrammableStageDescriptor {
module: &fs_module,
entry_point: "main",
}),
rasterization_state: Some(wgpu::RasterizationStateDescriptor {
front_face: wgpu::FrontFace::Ccw,
cull_mode: wgpu::CullMode::Back,
..Default::default()
}),
primitive_topology: wgpu::PrimitiveTopology::TriangleList,
color_states: &[sc_desc.format.into()],
depth_stencil_state: Some(wgpu::DepthStencilStateDescriptor {
format: Self::DEPTH_FORMAT,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil: wgpu::StencilStateDescriptor::default(),
}),
vertex_state: wgpu::VertexStateDescriptor {
index_format: Some(index_format),
vertex_buffers: &[vb_desc],
},
sample_count: 1,
sample_mask: !0,
alpha_to_coverage_enabled: false,
});
Pass {
pipeline,
bind_group,
uniform_buf,
}
};
let depth_texture = device.create_texture(&wgpu::TextureDescriptor {
size: wgpu::Extent3d {
width: sc_desc.width,
height: sc_desc.height,
depth: 1,
},
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::DEPTH_FORMAT,
usage: wgpu::TextureUsage::RENDER_ATTACHMENT,
label: None,
});
Example {
entities,
lights,
lights_are_dirty: true,
shadow_pass,
forward_pass,
forward_depth: depth_texture.create_view(&wgpu::TextureViewDescriptor::default()),
light_uniform_buf,
entity_uniform_buf,
entity_bind_group,
}
}
fn update(&mut self, _event: winit::event::WindowEvent) {
//empty
}
fn resize(
&mut self,
sc_desc: &wgpu::SwapChainDescriptor,
device: &wgpu::Device,
queue: &wgpu::Queue,
) {
// update view-projection matrix
let mx_total = Self::generate_matrix(sc_desc.width as f32 / sc_desc.height as f32);
let mx_ref: &[f32; 16] = mx_total.as_ref();
queue.write_buffer(
&self.forward_pass.uniform_buf,
0,
bytemuck::cast_slice(mx_ref),
);
let depth_texture = device.create_texture(&wgpu::TextureDescriptor {
size: wgpu::Extent3d {
width: sc_desc.width,
height: sc_desc.height,
depth: 1,
},
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::DEPTH_FORMAT,
usage: wgpu::TextureUsage::RENDER_ATTACHMENT,
label: None,
});
self.forward_depth = depth_texture.create_view(&wgpu::TextureViewDescriptor::default());
}
fn render(
&mut self,
frame: &wgpu::SwapChainTexture,
device: &wgpu::Device,
queue: &wgpu::Queue,
_spawner: &impl futures::task::LocalSpawn,
) {
// update uniforms
for entity in self.entities.iter_mut() {
if entity.rotation_speed != 0.0 {
let rotation = cgmath::Matrix4::from_angle_x(cgmath::Deg(entity.rotation_speed));
entity.mx_world = entity.mx_world * rotation;
}
let data = EntityUniforms {
model: entity.mx_world.into(),
color: [
entity.color.r as f32,
entity.color.g as f32,
entity.color.b as f32,
entity.color.a as f32,
],
};
queue.write_buffer(
&self.entity_uniform_buf,
entity.uniform_offset as wgpu::BufferAddress,
bytemuck::bytes_of(&data),
);
}
if self.lights_are_dirty {
self.lights_are_dirty = false;
for (i, light) in self.lights.iter().enumerate() {
queue.write_buffer(
&self.light_uniform_buf,
(i * mem::size_of::<LightRaw>()) as wgpu::BufferAddress,
bytemuck::bytes_of(&light.to_raw()),
);
}
}
let mut encoder =
device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
encoder.push_debug_group("shadow passes");
for (i, light) in self.lights.iter().enumerate() {
encoder.push_debug_group(&format!(
"shadow pass {} (light at position {:?})",
i, light.pos
));
// The light uniform buffer already has the projection,
// let's just copy it over to the shadow uniform buffer.
encoder.copy_buffer_to_buffer(
&self.light_uniform_buf,
(i * mem::size_of::<LightRaw>()) as wgpu::BufferAddress,
&self.shadow_pass.uniform_buf,
0,
64,
);
encoder.insert_debug_marker("render entities");
{
let mut pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: None,
color_attachments: &[],
depth_stencil_attachment: Some(
wgpu::RenderPassDepthStencilAttachmentDescriptor {
attachment: &light.target_view,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
store: true,
}),
stencil_ops: None,
},
),
});
pass.set_pipeline(&self.shadow_pass.pipeline);
pass.set_bind_group(0, &self.shadow_pass.bind_group, &[]);
for entity in &self.entities {
pass.set_bind_group(1, &self.entity_bind_group, &[entity.uniform_offset]);
pass.set_index_buffer(entity.index_buf.slice(..), entity.index_format);
pass.set_vertex_buffer(0, entity.vertex_buf.slice(..));
pass.draw_indexed(0..entity.index_count as u32, 0, 0..1);
}
}
encoder.pop_debug_group();
}
encoder.pop_debug_group();
// forward pass
encoder.push_debug_group("forward rendering pass");
{
let mut pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: None,
color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor {
attachment: &frame.view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: true,
},
}],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachmentDescriptor {
attachment: &self.forward_depth,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
store: false,
}),
stencil_ops: None,
}),
});
pass.set_pipeline(&self.forward_pass.pipeline);
pass.set_bind_group(0, &self.forward_pass.bind_group, &[]);
for entity in &self.entities {
pass.set_bind_group(1, &self.entity_bind_group, &[entity.uniform_offset]);
pass.set_index_buffer(entity.index_buf.slice(..), entity.index_format);
pass.set_vertex_buffer(0, entity.vertex_buf.slice(..));
pass.draw_indexed(0..entity.index_count as u32, 0, 0..1);
}
}
encoder.pop_debug_group();
queue.submit(iter::once(encoder.finish()));
}
}
fn main() {
framework::run::<Example>("shadow");
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 277 KiB

Loading…
Cancel
Save