You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
4.9 KiB
168 lines
4.9 KiB
8 years ago
|
#pragma once
|
||
|
#include "search_function.h"
|
||
|
|
||
|
class genetic_algorithm : public search_function {
|
||
|
|
||
|
public:
|
||
|
|
||
|
genetic_algorithm(function f) : search_function(f) {};
|
||
|
|
||
|
double search(int permutations, int dimensionality) {
|
||
|
|
||
|
elitism = elitism_rate * number_of_solutions;
|
||
|
|
||
|
// Set up random start population
|
||
|
std::vector<std::vector<double>> population;
|
||
|
for (int p = 0; p < number_of_solutions; p++) {
|
||
|
std::vector<double> tmp;
|
||
|
for (int i = 0; i < dimensionality; i++){
|
||
|
tmp.push_back(fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound);
|
||
|
}
|
||
|
population.push_back(tmp);
|
||
|
}
|
||
|
|
||
|
|
||
|
for (int i = 0; i < max_iterations; i++){
|
||
|
|
||
|
// Setup the random new population
|
||
|
std::vector<std::vector<double>> new_population;
|
||
|
for (int p = 0; p < number_of_solutions; p++) {
|
||
|
std::vector<double> tmp;
|
||
|
for (int i = 0; i < dimensionality; i++){
|
||
|
tmp.push_back(fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound);
|
||
|
}
|
||
|
new_population.push_back(tmp);
|
||
|
}
|
||
|
|
||
|
for (int s = 0; s < number_of_solutions; s += 2){
|
||
|
|
||
|
auto p1p2 = select(&population);
|
||
|
|
||
|
crossover(&std::get<0>(p1p2), &std::get<1>(p1p2));
|
||
|
|
||
|
mutate(&std::get<0>(p1p2));
|
||
|
mutate(&std::get<1>(p1p2));
|
||
|
|
||
|
}
|
||
|
|
||
|
reduce(&population, &new_population);
|
||
|
|
||
|
for (auto q: population){
|
||
|
double val = func.compute(q);
|
||
|
if (val < best_fitness)
|
||
|
best_fitness = val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return best_fitness;
|
||
|
};
|
||
|
|
||
|
|
||
|
private:
|
||
|
|
||
|
double crossover_rate = 0.90;
|
||
|
double elitism_rate = 0.2;
|
||
|
int elitism = 10;
|
||
|
double mutation_rate = 0.008;
|
||
|
double mutation_range = 0.1;
|
||
|
double muration_precision = 3.5;
|
||
|
double best_fitness = 99999999999999999;
|
||
|
int number_of_solutions = 50;
|
||
|
int max_iterations = 100;
|
||
|
|
||
|
|
||
|
double get_fitness(std::vector<std::vector<double>> *population){
|
||
|
|
||
|
double fitness_sum = 0;
|
||
|
|
||
|
for (auto p: *population){
|
||
|
double fitness = func.compute(p);
|
||
|
if (fitness >= 0)
|
||
|
fitness_sum += 1 / (1 + fitness);
|
||
|
else
|
||
|
fitness_sum += 1 + abs(fitness);
|
||
|
}
|
||
|
|
||
|
return fitness_sum;
|
||
|
}
|
||
|
|
||
|
int select_parent(std::vector<std::vector<double>> *population){
|
||
|
|
||
|
double r = fmod(randomMT(), total_fitness(population));
|
||
|
|
||
|
int s = 0;
|
||
|
|
||
|
while (s < population->size()-1 && (r - func.compute(population->at(s)) > 0)) {
|
||
|
r -= func.compute(population->at(s++));
|
||
|
}
|
||
|
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
std::tuple<std::vector<double>, std::vector<double>> select(std::vector<std::vector<double>> *population){
|
||
|
|
||
|
auto p1 = population->at(select_parent(population));
|
||
|
auto p2 = population->at(select_parent(population));
|
||
|
|
||
|
return std::make_tuple(p1, p2);
|
||
|
};
|
||
|
|
||
|
void mutate(std::vector<double> *solution){
|
||
|
for (auto i: *solution){
|
||
|
if ((randomMT() * 1.0 / UINT32_MAX) < mutation_rate){
|
||
|
i += ((randomMT() * 1.0 / UINT32_MAX) * 2 - 1) * (func.upper_bound - func.lower_bound) *
|
||
|
mutation_range * pow(2, (-1 * (randomMT() * 1.0 / UINT32_MAX) * muration_precision));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void crossover(std::vector<double> *parent1, std::vector<double> *parent2){
|
||
|
|
||
|
if ((randomMT() * 1.0 / UINT32_MAX) < crossover_rate){
|
||
|
|
||
|
int d = randomMT() % (parent1->size() - 1) + 1;
|
||
|
int dim = parent1->size();
|
||
|
|
||
|
std::vector<double> temp;
|
||
|
temp.insert(temp.begin(), parent1->begin(), parent1->begin() + d);
|
||
|
|
||
|
parent1->erase(parent1->begin(), parent1->begin() + d);
|
||
|
parent1->insert(parent1->end(), parent2->begin() + dim - d, parent2->end());
|
||
|
|
||
|
parent2->erase(parent2->begin() + dim - d, parent2->end());
|
||
|
parent2->insert(parent2->end(), temp.begin(), temp.end());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void reduce(std::vector<std::vector<double>> *population, std::vector<std::vector<double>> *new_population){
|
||
|
|
||
|
std::sort(population->begin(), population->end(), [this](std::vector<double> a, std::vector<double> b){
|
||
|
return this->func.compute(a) < this->func.compute(b);
|
||
|
});
|
||
|
|
||
|
std::sort(new_population->begin(), new_population->end(), [this](std::vector<double> a, std::vector<double> b){
|
||
|
return this->func.compute(a) < this->func.compute(b);
|
||
|
});
|
||
|
|
||
|
for (int s = 0; s < elitism; s++) {
|
||
|
new_population->at(elitism + 1 - s) = population->at(s);
|
||
|
}
|
||
|
|
||
|
*population = *new_population;
|
||
|
|
||
|
}
|
||
|
|
||
|
double total_fitness(std::vector<std::vector<double>> *population){
|
||
|
|
||
|
double val = 0;
|
||
|
|
||
|
for (auto i: *population)
|
||
|
val += func.compute(i);
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
|