You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
88 lines
2.4 KiB
88 lines
2.4 KiB
8 years ago
|
#pragma once
|
||
|
#include "search_function.h"
|
||
|
|
||
|
class firefly : public search_function {
|
||
|
|
||
|
public:
|
||
|
|
||
|
firefly(function f) : search_function(f) {};
|
||
|
|
||
|
double search(int permutations, int dimensionality) {
|
||
|
|
||
|
// Set up random start population
|
||
|
for (int p = 0; p < population_size; p++) {
|
||
|
std::vector<double> tmp;
|
||
|
for (int i = 0; i < dimensionality; i++){
|
||
|
tmp.push_back(fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound);
|
||
|
}
|
||
|
population.push_back(tmp);
|
||
|
}
|
||
|
|
||
|
|
||
|
for (int t = 0; t < iterations; t++){
|
||
|
|
||
|
// Compare each fly to each other
|
||
|
for (int i = 0; i < population.size(); i++){
|
||
|
for (int j = 0; j < population.size(); j++){
|
||
|
|
||
|
// If it finds one brighter
|
||
|
if (func.compute(population.at(j)) < func.compute(population.at(i))){
|
||
|
|
||
|
// Move towards it for each dimension
|
||
|
for (int d = 0; d < dimensionality; d++){
|
||
|
|
||
|
population.at(i).at(d) =
|
||
|
population.at(i).at(d) +
|
||
|
attractiveness(distance(population.at(i), population.at(j))) *
|
||
|
(population.at(j).at(d) - population.at(i).at(d)) + alpha *
|
||
|
rand_between(-0.5, 0.5);
|
||
|
|
||
|
check_solution_bounds(&population.at(i));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Sort the population and return the best fitness
|
||
|
std::sort(population.begin(), population.end(), [this](std::vector<double> a, std::vector<double> b){
|
||
|
return this->func.compute(a) < this->func.compute(b);
|
||
|
});
|
||
|
return func.compute(population.front());
|
||
|
};
|
||
|
|
||
|
private:
|
||
|
|
||
|
// Distance between two vector points
|
||
|
double distance(std::vector<double> a, std::vector<double> b){
|
||
|
|
||
|
double sum = 0;
|
||
|
for (int i = 0; i < a.size(); i++){
|
||
|
sum += pow(a.at(i) - b.at(i), 2);
|
||
|
}
|
||
|
return sqrt(sum);
|
||
|
}
|
||
|
|
||
|
// Inverse square law basically
|
||
|
double attractiveness(double distance){
|
||
|
return beta * exp(-gamma * distance * distance);
|
||
|
}
|
||
|
|
||
|
// Constants
|
||
|
double gamma = 1.0;
|
||
|
double alpha = 0.5;
|
||
|
double beta = 0.2;
|
||
|
|
||
|
int iterations = 100;
|
||
|
int population_size = 50;
|
||
|
|
||
|
std::vector<std::vector<double>> population;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|