
Lab 2

Dr. Donald Davendra
CS471 - Optimization

October 12, 2016

1 Blind Algorithm - Random Walk

The first attempts to search for optimal values of the utility function within the group of
enumerative algorithms, whose aim was to calculate the objective value in all possible points
and then comparing the obtained value for the minimum or maximum.

In essence, this means generating a user-defined number of random points on the search
space and define a function which then selects an individual with a minimum value. This
algorithm has no other ties to the development of individuals towards global extreme that
is found on the quality of previous values.

input : iterations: maximum number of iterations,
argbest: the best solution found
fitness0: initial setting to a large value

output: argbest: the best solution found

1 for i← 0 to iterations do
2 arg = randi
3 /* where randi is a random number between the defined interval */

4 fitness = Fcost(arg)
5 if fitness < fitness0 then
6 fitness0 = fitness
7 argbest = arg

8 end

9 end

Algorithm 1: Blind Search

2 Local Search

The method is based on the initial solution under consideration (usually randomly gener-
ated), which generates a set of neighbouring solutions. In order to find the best solution
among those neighbours, if the found one is better than the default solution, we take it as

1



new current best solution and we again generate neighbours to it and look amongst them for
“improved” solutions. This procedure is repeated until we decide that between neighbouring
solutions there are no longer any improving solutions.

Stochasticity of this procedure is just a random selection of initial solutions, the following
optimisation algorithm used is strictly deterministic. The method of local search (LS ) is a
(stochastic) algorithm with the following parameters:

LS = (M,x0, N, f)

where:

• M is the solution space

• x0 is the initial solution. If x0 is determined randomly, then the method is stochastic
local search algorithm.

• σ ⊆M ·M is a binary relation on M defining neighbouring solutions.

• N(x, σ) = {y ∈M |(y, x) ∈ σ} is the set of solutions which are neighbour of x, x ∈M

• f is the objective function, the optimum seeking f : M → R

The following pseudocode describes the local search process. Boolean variable τ serves
as the termination criterion, which is true if a better solution is found in the neighborhood
and false otherwise. x0 is the initial (pseudo-random) solution.

input : x0: initial random solution
x∗: best solution found
τ : boolean variable

output: x∗: best solution found

1 x∗ = x /* initialize best solution to the random solution */

2 τ = true /* initialize τ to true */

44 while τ = true do
5 τ = false
6 generate N(x∗, σ)
7 find x ∈ N(x∗, σ) so that f(xloc) ≤ f(x), for each x ∈ N(x∗, σ))
8 if f(x) < f(x∗) then
9 x∗ = xloc;

10 τ = true;

11 end

12 end

Algorithm 2: Local Search

3 Iterative Local Search

There are several ways to reduce the likelihood of deadlock in a local optimum, namely:

2



• enlarge the set of neighbours.

• repeat the method of local search for several different (pseudo-randomly generated)
initial solutions and record the best solution.

• to admit even steps, after which there is a deterioration in the value of objective
function, thereby allowing the “turn” to another area of space solution.

All these methods offer hope of obtaining a better solution, but require longer calculation
time. The second method, known as the repeated local search can be formally written as
follows:

RLS = (M,x0, N, f, tmax)

where:

• M is the solution space

• x0 is the initial solution. If x0 is determined randomly, then the method is stochastic
local search algorithm.

• σ ⊆M ·M is a binary relation on M defining neighbouring solutions.

• N(x, σ) = {y ∈M |(y, x) ∈ σ} is the set of solutions which are neighbour of x, x ∈M

• f is the objective function, the optimum seeking f : M → R

• tmax parameter specifies the chosen number of iterations the algorithm performs a local
search and criteria for termination.

The following pseudocode describes the repeated local search process. Boolean variable
τ serves as the termination criterion, which is true if a better solution is found in the
neighborhood and false otherwise. x0 is the initial (pseudo-random) solution, and tmax is
the maximum number of iterations.

3



input : x0t: initial random solution
x∗: best global solution
x∗t : best global solution in each iteration
τ : boolean variable
tmax: maximum number of iterations

output: x∗: best solution found

1 x∗t = x0t /* initialize iterative best solution */

2 x∗ = x0t /* initialize global best solution */

3 τ = true /* initialize τ to true */

4 t = 1 /* initialize t to 1 */

66 while t ≤ tmax do
88 while τ = true do
9 τ = false

10 generate N(x∗, σ)
11 find x ∈ N(x∗, σ) so that f(xloc) ≤ f(x), for each x ∈ N(x∗, σ))
12 if f(xloc) < f(x∗t ) then
13 x∗t = xloc;
14 τ = true;

15 end

16 end
17 if f(x∗) < f(x∗t ) then
18 x∗ = x∗t ;
19 /* update the best solution after t interactions */

20 end
21 t = t+ 1 /* update the t counter */

22 x∗t = x0t /* (randomly) choose a new initial solution x0t */

23 end

Algorithm 3: Repeated Local Search

4 Experimentation

The student is required to modify the code from Lab 1 and add the three described al-
gorithms. For each algorithm, 30 iterations for each problem is required for 10, 20 and
30 dimensions. Compute statistical analysis on the obtained results for average, standard
deviation, range, median and time.

Submission

The student must submit the following separate files to canvas:

1. source codes for the problems

2. a LATEX typeset report on the results and its analysis

4



The report must contain an introduction in the algorithms, the full experimentation results
in tabular format and condensed results with statistical analysis compared with what was
obtained in Lab 1.

The files must be submitted through Canvas by midnight October 24, 2016. The penalty
for late submission is 10% for 1 day, 20% for 2 day, after which it will be zero. The grading
rubric is given in Table 1.

Table 1: Grading rubric

File Aspects Points

Code Compiles and executes 35
Explanation 15

Report Results 25
Analysis 25

5


