
Lab 4

Dr. Donald Davendra
CS471 - Optimization

November 16, 2016

1 Introduction

The lab introduces another three of the new meta-heuristics. These are the Self-Organising
Migrating Algorithm (SOMA), Firefly Algorithm (FA) and Harmony Search Algorithm (HS).

This lab requires you to code the three algorithms in a common framework and conduct
experiments on the unimodel and multimodel problems. The algorithms are described in the
following sections.

2 Self Organising Migrating Algorithm

SOMA is not based on the philosophy of evolution (two parents create one new individual
-the offspring), but on the behavior of a social group of individuals, e.g. a herd of animals
looking for food. One can classify SOMA as an evolutionary algorithm, because the final
result, after one migration loop, is equivalent to the result from one generation derived by
the classic EA algorithms - individuals hold new positions on the N dimensional hyper-
plane. When the group of individuals is created, then the rule mentioned above governs the
behavior of all individuals so that they demonstrate ’self-organization’ behavior. Because
no new individuals are created, and only existing ones are moving over the N -dimensional
hyper-plane, this algorithm has been termed the Self-Organizing Migrating Algorithm, or
SOMA for short.

SOMA is a stochastic optimization algorithm that is modeled on the social behavior
of cooperating individuals, such as swarm algorithms. SOMA works on a population of
candidate solutions in loops called migration loops. The population is initialized randomly
distributed over the search space at the beginning of the search. In each loop, the population
is evaluated and the solution with the highest fitness becomes the Leader L. Apart from the
leader, in one migration loop, all individuals will traverse the input space in the direction of
the leader. Mutation, the random perturbation of individuals, is an important operation for
evolutionary algorithms. It ensures the diversity amongst the individuals and it also provides
the means to restore lost information in a population. Mutation is different in SOMA
compared with other EAs. SOMA uses a parameter called PRT to achieve perturbation.
This parameter has the same effect for SOMA as mutation has for GA. The novelty of this
approach is that the PRT Vector is in canonical version created before an individual starts

1

its journey over the search space. The PRT Vector defines the final movement of an active
individual in search space. The randomly generated binary perturbation vector controls the
allowed dimensions for an individual. If an element of the perturbation vector is set to zero,
then the individual is not allowed to change its position in the corresponding dimension. An
individual will travel a certain distance (called the path length) towards the Leader in n steps
of defined length. If the path length is chosen to be greater than one, then the individual
will overshoot the leader. This path is perturbed randomly.

2.1 SOMA Principles and Control Parameters

In the previous sections it was mentioned that SOMA was inspired by the competitive-
cooperative behavior of intelligent creatures solving a common problem. Such a behavior
can be observed anywhere in the world. A group of animals such as wolves or other predators
may be a good example. If they are looking for food, they usually cooperate and compete
so that if one member of the group is successful (it has found some food or shelter) then the
other animals of the group change their trajectories towards the most successful member. If
a member of this group is more successful than the previous best one (is has found more food,
etc.) then again all members change their trajectories towards the new successful member.
It is repeated until all members meet around one food source. This principle from the real
world is of course strongly simplified. Yet even so, it can be said it is that competitive-
cooperative behavior of intelligent agents that allows SOMA to carry out very successful
searches. For the implementation of this approach, the following analogies are used:

1. Members of herd/pack ⇔ individuals of population, PopSize parameter of SOMA.

2. Member with the best source of food ⇔ Leader, the best individual in population for
actual migration loop.

3. Food ⇔ fitness, local or global extreme on N dimensional hyper-plane.

4. Landscape where pack is living ⇔ N dimensional hyper-plane given by cost function.

5. Migrating of pack members over the landscape ⇔ migrations in SOMA.

The following section explains in a series of detailed steps how SOMA actually works.
SOMA works in loops - so called Migration loops. These play the same role as Generations
in classic EAs. The difference between SOMA’s Migrationloops and EA’s Generations
come from the fact that during a Generations in classic EA’s offspring is created by means
of at least two or more parents (two in GA, four in DE for example). In the case of SOMA,
there is no newly created offspring based on parents crossing. Instead, new positions are
calculated for the individuals traveling towards the current Leader. The term Migrations
refers to their movement over the landscape-hyper-plane. It can be demonstrated that SOMA
can be viewed as an algorithm based on offspring creation. The Leader plays the role of
roe-buck (male), while other individuals play the role of roe (female); note that this has the
characteristics of pack reproduction with one dominant male. Hence, GA, DE, etc. may be
seen as a special case of SOMA and vice versa (see later SOMA strategy AllToAll). Because

2

the original idea of SOMA is derived from competitive-cooperative behavior of intelligent
beings, we suppose that this background is the most suitable one for its explanation. The
basic version of SOMA consists of the following steps:

1. Parameter definition. Before starting the algorithm, SOMA’s parameters, e.g. Specimen,
Step, PathLength, PopSize, PRT , MinDiv, Migrations and the cost function needs
to be defined. Cost function is simply the function which returns a scalar that can
directly serve as a measure of fitness. The cost function is then defined as a model of
real world problems, (e.g. behavior of controller, quality of pressure vessel, behavior
of reactor, etc.).

2. Creation of Population. A population of individuals is randomly generated. Each
parameter for each individual has to be chosen randomly from the given range [Lo, Hi]
by using Eq. 1. The population (Fig. 1) then consists of columns - individuals which
conform with the specimen.

3. Migrating loop. Each individual is evaluated by cost function and the Leader (individ-
ual with the highest fitness) is chosen for the current migration loop. Then all other
individuals begin to jump, (according to the Step definition) towards the Leader. Each
individual is evaluated after each jump using the cost function. The jumping (Eq. 2)
continues, until a new position defined by the PathLength has been reached. The
new position after each jump is calculated by Eq. 2. This is shown graphically in
Fig. ??. The individual returns then to that position where it found the best fitness
on its trajectory. Before an individual begins jumping towards the Leader, a random
number is generated (for each individual’s component), and then compared with PRT .
If the generated random number is larger than PRT , then the associated component
of the individual is set to 0 by means of the PRTV ector (see Eq. 3 otherwise set to
1. Hence, the individual moves in the N -k dimensional subspace, which is perpendic-
ular to the original space. This fact establishes a higher robustness of the algorithm.
Earlier experiments have demonstrated that, without the use of PRT , SOMA tends to
determine a local optimum rather than the global one. Migration can be also viewed
as a competitive-cooperative phase. During the competitive phase each individual tries
to find the best position on its way and also the best from all individuals. Thus during
migration, all individuals compete among themselves. When all individuals are in new
positions, they release information as to their cost value. This can be regarded as
a cooperative phase. All individuals cooperate so that the best individual (Leader)
is chosen. Competitive-cooperative behavior is one of the other important attributes
typical for memetic algorithms.

4. Test for stopping condition. If the difference between Leader and the worst individual
is not lower than the MinDiv and the maximum number of Migrations has not been
reached, return to step 3 otherwise go to step 5 .

5. Stop. Recall the best solution(s) found during the search.

InitilPopulation = x
(lo)
j + randj [0, 1]× (x

(hi)
j − x

(lo)
j) (1)

3

xML+1
i,j = xML

i,j,start + (xML
L,j − xML

i,j,start) · t · PRTV ectorj (2)

if rndj < PRT then PRTV ectorj = 1 else 0 , j = 1, . . . , N (3)

Steps 1 to 5 are graphically depicted in Figure 1 or in pseudocode in Figure 2.

 Control parameter PRT vector
Step 0.11 If rnd < PRT then 1 else 0 1
PathLength 3 If rnd < PRT then 1 else 0 0
PRT 0.1 If rnd < PRT then 1 else 0 0
MinDiv -0.1 If rnd < PRT then 1 else 0 1
Migrations 100 If rnd < PRT then 1 else 0 0
PopSize 7 If rnd < PRT then 1 else 0 1

Cost function f(x) = Abs(Parameter 1)+ Abs(Parameter 2) +...+ Abs(Parameter 6)

Travelling individual Leader

Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6 Individual 7
CostValue 204.91528 261.3632 163.79679 121.73019 107.52784 121.06024 120.20974
Parameter 1 3.0615753 -46.635691 5.0246553 38.723912 35.822343 0.0715185 23.761224
Parameter 2 2.5117282 54.036685 85.104704 0.2928606 24.111443 4.2879691 20.384665
Parameter 3 46.75014 51.282894 11.347164 3.0796963 24.657689 60.241731 33.437248
Parameter 4 72.486617 15.080129 2.916686 3.6713463 5.8142407 4.5385164 4.0482021
Parameter 5 6.316564 57.155744 58.829537 26.610056 12.43856 23.891907 4.2271271
Parameter 6 73.788657 -37.172056 0.5740442 49.352316 4.6835676 28.028598 34.351273

New positions
t = 0 t = 1 t = 2 t = 8 t = 9 t = 10

CostValue 261.3632 246.66945 231.9757 … 384.17836 424.25222 464.32608
-46.63569 -37.565307 -28.49492 … 151.26359 176.001 200.73841
54.036685 54.036685 54.036685 … 54.036685 54.036685 54.036685
51.282894 51.282894 51.282894 … 51.282894 51.282894 51.282894
15.080129 14.060881 13.041633 … -7.158003 -9.937769 -12.71754
57.155744 57.155744 57.155744 … 57.155744 57.155744 57.155744
-37.17206 -32.567937 -27.96382 … 63.281441 75.838128 88.394815

CostValue 261.3632 Individual 186.89373 Individual with the lowest costvalue
-46.635691 with lower 2.8391294 of all positions
54.036685 cost value 54.036685
51.282894 51.282894

… …

Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6 Individual 7
CostValue 204.91528 186.89373
Parameter 1 3.0615753 2.8391294
Parameter 2 2.5117282 54.036685
Parameter 3 46.75014 51.282894
Parameter 4 72.486617 9.5205959
Parameter 5 6.316564 57.155744
Parameter 6 73.788657 -12.058682

xi, j
MK+1 = xi, j,start

MK + (xL, j
MK − xi, j,start

MK)t PRTVector j

t ∈< 0, by Step to, PathLength >

Figure 1: SOMA Principle

4

The pseudocode of SOMA can be written such as:

SOMA AllToOne input parameters :
x : the initial randomly generated population
Controlling and stopping parameters − see Tab. 1
fcost : cost function (fitness function)
Specimen : an individual structure (parameters range, its ”nature” i.e. real, integer, discrete, ...)
for i ≤ Migration do

begin
Selection of the best individual − Leader
forj ≤ PopSize do
selection of jth individual
calculate fcost of the new positions see Eq.2
save the best solution of the jth individual on its trajectory in a new population

end
if MinDiv < |best individual− worst individual|
then begin
Stop SOMA and return the best solution (or last calculated population)

end
end

Stop SOMA and return the best solution (or last population)

or see Eq. 2. SOMA principle can be graphically visualized as in Fig. 1.

Input :N,Migrations(ML), PopSize ≥ 2, PRT ∈ [0, 1], Step ∈ (0, 1],MinDiv ∈ (−∞,∞),

PathLength ∈ (1, 5], Specimen with upper and lower bound x
(hi)
j , x

(lo)
j

Inicialization :

{
∀i ≤ PopSize ∧ ∀j ≤ N : xML0

i,j = x
(lo)
j + randj [0, 1]

(
x
(hi)
j − x

(lo)
j

)
i = {1, 2, ...,Migrations}, j = {1, 2, ..., N}

While i < Migrations

∀i ≤ PopSize

While t ≤ PathLength
if rndj < PRT then PRTV ectorj = 1 else 0 , j = 1, . . . , N
xML+1
i,j = xML

i,j,start + (xML
L,j − xML

i,j,start) t PRTV ectorj
f
(
xML+1
i,j

)
= if f

(
xML
i,j

)
≤ f

(
xML
i,j,start

)
else f

(
xML
i,j,start

)
t = t+ Step

i = i+ 1

Figure 2: Self Organizing Migrating Algorithm

Based on above described principles, SOMA can be also regarded as a member of swarm
intelligence class algorithms. In the same class is the algorithm particle swarm, which is also
based on population of particles, which are mutually influenced amongst themselves.

5

2.2 SOMA Strategies

Currently, a few variations - strategies of the SOMA algorithm exist. All versions are almost
fully comparable with each other in the sense of finding of global optimum. These versions
are:

1. ’AllToOne’: This is the basic strategy, that was previously described. Strategy All-
ToOne means that all individuals move towards the Leader, except the Leader. The
Leader remains at its position during a Migration loop. The principle of this strategy
is shown in Figure 3.

2. ’AllToAll’: In this strategy, there is no Leader. All individuals move towards the
other individuals. This strategy is computationally more demanding. Interestingly,
this strategy often needs less cost function evaluations to reach the global optimum
than the AllToOne strategy. This is caused by the fact that each individual visits a
larger number of parts on the N dimensional hyper-plane during one Migration loop
than the AllToOne strategy does. Figure 4 shows the AllToAll strategy with PRT =
1.

3. ’AllToAll Adaptive’: The difference between this and the previous version is, that indi-
viduals do not begin a new migration from the same old position (as in AllToAll), but
from the last best position found during the last traveling to the previous individual.

4. ’AllToRand’: This is a strategy, where all individuals move towards a randomly selected
individual during the migration loop, no matter what cost value this individual has. It
is up to the user to decide how many randomly selected individuals there should be.
Here are two sub-strategies:

• The number of randomly selected individuals is constant during the whole SOMA
process.

• For each migration loop, (in intervals of [1, PopSize]) the actual number of indi-
viduals is determined randomly. Thus, the number of randomly chosen individuals
in the second sub-strategy is different in each migration loop.

2.3 SOMA Parameters

SOMA, as other EAs, is controlled by a special set of parameters. Some of these parameters
are used to stop the search process when one of two criteria are fulfilled; the others are
responsible for the quality of the results of the optimization process. The parameters are
shown in Table 1

A sensitivity of SOMA, as well as of other EAs, is that it has a slight dependence on
the control parameter setting. During various tests it was found that SOMA is sensitive
on the parameter setting as well as others algorithms. On the other side there was found
setting that is almost universal, i.e. this setting was used almost in all simulations and
experiments with very good performance of SOMA. The control parameters are described

6

Figure 3: SOMA AllToOne, the principle of migrating (left) and new individual position
(right) after one migration

Figure 4: SOMA AllToAll, the principle of migrating (left) and new individual position
(right) after one migration

below and recommended values for the parameters, derived empirically from a great number
of experiments, are given:

• PathLength ∈ [1.1, 5]. This parameter defines how far an individual stops behind the
Leader (PathLength=1: stop at the leader’s position, PathLength=2: stop behind
the leader’s position on the opposite side but at the same distance as at the starting
point). If it is smaller than 1, then the Leader’s position is not overshot, which carries
the risk of premature convergence. In that case SOMA may get trapped in a local
optimum rather than finding the global optimum. Recommended value is 3–5.

• Step ∈ [0.11, PathLength]. The step size defines the granularity with what the search
space is sampled. In case of simple objective functions (convex, one or a few local
extremes, etc.), it is possible to use a large Step size in order to speed up the search
process. If prior information about the objective function is not known, then the
recommended value should be used. For greater diversity of the population, it is better
if the distance between the start position of an individual and the Leader is not an

7

Table 1: SOMA parameters

Parameter name Recommended range Remark

PathLength [1.1, 5] Controlling parameter
Step [0.11, PathLength] Controlling parameter
PRT [0, 1] Controlling parameter
Dim Defined by problem Number of arguments in cost function
PopSize [10, up to user] Controlling parameter
Migrations [10, up to user] Stopping parameter
MinDiv [arbitrary negative, up to user] Stopping parameter

integer multiple of the Step parameter. That means that a Step size of 0.11 is better
than a Step size of 0.1 (that lead jumping directly on the Leader position), because
the active individual will not reach exactly the position of the Leader. Recommended
value is 0.11.

• PRT ∈ [0, 1]. PRT stands for perturbation. This parameter determines whether
an individual will travel directly towards the Leader, or not. It is one of the most
sensitive control parameters. The optimal value is near 0.1. When the value for PRT
is increased, the convergence speed of SOMA increases as well. In the case of low
dimensional functions and a great number of individuals, it is possible to set PRT to
0.7-1.0. If PRT equals 1 then the stochastic component of SOMA disappears and it
performs only deterministic behavior suitable for local search.

• Dim - the dimensionality (number of optimized arguments of cost function) is given
by the optimization problem. Its exact value is determined by the cost function and
usually cannot be changed unless the user can reformulate the optimization problem.
Recommended value is 0.1 – 0.2.

• PopSize ∈ [10, up to the user]. This is the number of individuals in the population. It
may be chosen to be 0.5 to 0.7 times of the dimensionality (Dim) of the given problem.
For example, if the optimization function has 100 arguments, then the population
should contain approximately 30-50 individuals. In the case of simple functions, a small
number of individuals may be sufficient; otherwise larger values for PopSize should be
chosen. It is recommended to use at least 10 individuals (two are theoretical minimum),
because if the population size is smaller than that, SOMA will strongly degrade its
performance to the level of simple and classic optimization methods. Recommended
value is 10 >.

• Migrations ∈ [10, up to user]. This parameter represents the maximum number of
iterations. It is basically the same as generations for GA or DE. Here, it is called
Migrations to refer to the nature of SOMA - individual creatures move over the
landscape and search for an optimum solution. Migrations is a stopping criterion,
i.e. it tells the optimizing process when to stop. Recommended value is up to user

8

experience, generally 10 >.

• MinDiv ∈ [arbitrary negative (switch off this criterion), up to the user]. The MinDiv
defines the largest allowed difference between the best and the worst individual from
actual population. If the difference is smaller then defined MinDiv, the optimizing
process is will stop (see Fig. 5). It is recommended to use small values. It is safe to
use small values for the MinDiv, e.g. MinDiv = 1. In the worst case, the search will
stop when the maximum number of migrations is reached. Negative values are also
possible for the MinDiv. In this case, the stop condition for MinDiv will not be
satisfied and thus SOMA will pass through all Migrations.

!

"3 "2 "1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: MinDiv principle

3 Firefly Algorithm

Firefly algorithm (FA) is a new swarm intelligence algorithm developed by Yang in 2010. It is
inspired by the social behavior of fireflies based on the flashing and attraction characteristics
of fireflies. In the past five years, the research of FA has attracted much attention. Different
versions of FA has been designed to solve bench- mark or real-world optimization problem

In the FA, the fitness function for a given problem is associated with the light intensity.
The brighter the firefly is, the better the firefly is. That means a brighter firefly has a better
fitness value. The search process of FA depends on the attractions between fireflies. Based
on these attractions, a firefly tends to move other brighter fireflies. If a firefly is brighter
than another one, the brighter firefly will not conduct any search. When the current firefly
is brighter than another one, a local search operation is conducted on the current one to
provide more chances of finding more accurate solutions.

3.1 Description

As mentioned before, the FA mimics the behavior of the social behavior of the flashing
characteristics of fireflies. To simply the behavior of fireflies and construct the search mode
of FA, three rules are used as follows:

9

1. All fireflies are unisex so that one firefly is attracted to other fireflies regardless of their
sex;

2. Attractiveness is proportional to their brightness. For any two fireflies, the less bright
one is attracted by the brighter one. The attractiveness is proportional to the brightness
and they both decrease as their distance increases. If no one is brighter than a particular
firefly, it moves randomly;

3. The brightness or light intensity of a firefly is affected or determined by the land- scape
of the objective function to be optimized. For a minimization problem, the brightness
can be proportional to the objective function. It means that the brighter firefly has
smaller objective function value.

As light intensity and thus attractiveness decreases as the distance from the source in-
creases, the variations of light intensity and attractiveness should be monotonically decreas-
ing functions. This can be approximated by the following Equation (4).

I (r) = I0e
−γr2 (4)

where I is the light intensity, I0 is the original light intensity, and c is the light absorp-
tion coefficient. The attractiveness of a firefly is proportional to the light intensity. The
attractiveness β of a firefly can be defined by Equation (5):

β (r) = β0e
−γr2 (5)

where β0 is a constant and presents the attractiveness at r = 0. The distance between
ri,j between any two fireflies i and j can be calculated by Equation (6):

ri,j = ∥Xi −Xj∥ =

√√√√ D∑
d=1

(xi,d − xj,d)
2 (6)

where D is the dimensional size of the given problem. Based on the above definitions,
the movement of this attraction is defined by Equation (7):

x(t+1)
i,d

= x(t)
i,d

+ β0 · e−γr2i,j ·
(
x(t)

j,d
− x(t)

i,d

)
+ α · ε(t)i,d (7)

where xi,d and xj,d is the dth dimension of firefly i and j, respectively, a is a random
value with the range of [0,1], εi,d is a Gaussian random number for the dth dimension, and t
indicates the index of generation.

The operating parameters for the FA algorithm is given in Table 2.
The general outline of the Firefly algorithm is given in the following Algorithm 1.

10

Table 2: Table of FA parameters

Parameter value
α 0.5
β0 0.2
γ 1.0

input : Iterations: maximum number of iterations
D: dimension of the problem
Fireflies: number of fireflies fi
I: light intensity
γ: light absorption coefficient
Bounds: Problem bounds (U - upper bound, L - lower bound)

output: gBest: best firefly found

1 for i = 1,. . . ,Fireflies do
2 /* generate fireflies randomly */

3 fi = L+rand[0,1](U-L)
4 /* calculate particles fitness */

5 Ii = f(fi)

6 end for
7 for t = 1,. . . ,Iterations do
8 for i = 1,. . . ,Fireflies do
9 for j = 1,. . . ,Fireflies do

10 if Ij < Ii then
11 /* Move firefly j towards firefly i (Eqn.6) */

12 /* Attractiveness varies with distance r via exp[−γr]
(Eqn.5) */

13 /* evaluate and update the worst firefly in population

(Eqn.7) */

14 end if

15 end for

16 end for

17 end for

Algorithm 1: Firefly Algorithm

4 Harmony Search

In order to explain the Harmony Search in more detail, let us first idealize the improvisation
process by a skilled musician. When a musician is improvising, he or she has three possible
choices:

• play any famous piece of music (a series of pitches in harmony) exactly from his or her
memory;

11

• play something similar to a known piece (thus adjusting the pitch slightly);

• compose new or random notes. Zong Woo Geem et al. formalized these three options
into quantitative optimization process in 2001, and the three corresponding components
become: usage of harmony memory, pitch adjusting, and randomization

The usage of harmony memory is important, as it is similar to the choice of the best-fit
individuals in genetic algorithms. This will ensure that the best harmonies will be carried
over to the new harmony memory. In order to use this memory more effectively, it is typically
assigned as a parameter raccept ∈ [0, 1], called harmony memory accepting or considering rate.
If this rate is too low, only few best harmonies are selected and it may converge too slowly.
If this rate is extremely high (near 1), almost all the harmonies are used in the harmony
memory, then other harmonies are not explored well, leading to potentially wrong solutions.
Therefore, typically, we use raccept = 0.7 to 0.95.

The second component is the pitch adjustment determined by a pitch bandwidth brange
and a pitch adjusting rate rpa. Though in music, pitch adjustment means to change the
frequencies, it corresponds to generate a slightly different solution in the Harmony Search
algorithm. In theory, the pitch can be adjusted linearly or nonlinearly, but in practice, linear
adjustment is used. So we have

xnew = xold + brange · ε (8)

where xold is the existing pitch or solution from the harmony memory, and xnew is the
new pitch after the pitch adjusting action. This essentially produces a new solution around
the existing quality solution by varying the pitch slightly by a small random amount [1, 2].
Here ε is a random number generator in the range of [−1, 1]. Pitch adjustment is similar to
the mutation operator in genetic algorithms. We can assign a pitch-adjusting rate (rpa) to
control the degree of the adjustment. A low pitch adjusting rate with a narrow bandwidth
can slow down the convergence of HS because the limitation in the exploration of only a
small subspace of the whole search space. On the other hand, a very high pitch-adjusting
rate with a wide bandwidth may cause the solution to scatter around some potential optima
as in a random search. Thus, we usually use rpa = 0.1 to 0.5 in most applications.

The third component is the randomization, which is to increase the diversity of the
solutions. Although adjusting pitch has a similar role, but it is limited to certain local pitch
adjustment and thus corresponds to a local search. The use of randomization can drive the
system further to explore various diverse solutions so as to find the global optimality.

12

1 Function Harmony Search() /* Harmony Search Algorithm routines */

2 Objective function f(x), x = (x1, x2, . . . , xd)
T

3 Generate initial harmonics (real number arrays)
4 Define pitch adjusting rate (rpa), pitch limits and bandwidth
5 Define harmony memory accepting rate (raccept)
6 while !Terination−Criteria do
7 Generate new harmonics by accepting best harmonics
8 Adjust pitch to get new harmonics (solutions)
9 if rand > raccept then

10 choose an existing harmonic randomly;
11 else if rand > rpa then
12 adjust the pitch randomly within limits;
13 else generate new harmonics via randomization;
14 Accept the new harmonics (solutions) if better

15 end while
16 Find the current best solution

Algorithm 2: Harmony Search Algorithm
The three components in harmony search can be summarized as the pseudocode shown

in Algorithm 2. In this pseudocode, we can see that the probability of randomization is:

Prandom = 1− raccept (9)

and the actual probability of adjusting pitches is

Ppitch = raccept · rpa (10)

5 Experimentation

The student is required to code all three algorithms in the language of their choice. Ideally,
all three algorithms should share same auxiliary structures, such as population generation,
memory management, problems definitions etc.

The experimentation parameters is given in Table 3.

Table 3: Experiment parameters

Parameters Values
Population size 50 (min)
Iterations 100 (min)
Dimensions 20

Submission

The student must submit the following separate files to canvas:

13

1. source codes for the problems

2. a LATEX typeset report on the results and its analysis

The report must contain an introduction in the algorithms, the full experimentation results
in tabular format and condensed results with statistical analysis compared with what was
obtained in Lab 3.

The files must be submitted through Canvas by midnight November 21, 2016. The penalty
for late submission is 10% for 1 day, 20% for 2 day, after which it will be zero. The grading
rubric is given in Table 4.

Table 4: Grading rubric

File Aspects Points

Code Compiles and executes 35
Explanation 15

Report Results 25
Analysis 25

14

