import math # Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). # If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers. # For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. # The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220. # Evaluate the sum of all the amicable numbers under 10000. def get_divisor_sum(input): divisor_sum = 0 cutoff = math.ceil(input / 2) for idx, val in enumerate(range(cutoff), 1): if input % idx == 0: divisor_sum += idx return divisor_sum def get_amicable(): sums = [] for i in range(10000): sums.append(get_divisor_sum(i)) amicable_sum = 0 for idx, val in enumerate(sums): if val < 10000: if sums[val] == idx and idx != val: amicable_sum += val + sums[val] print("VAL1_IDX: ", val) #print("VAL1_VAL: ", val) print("VAL2_VAL: ", sums[val]) print("") return amicable_sum/2 print(get_amicable())