|
|
|
__kernel void min_kern(
|
|
|
|
global char* map,
|
|
|
|
global int3* map_dim,
|
|
|
|
global int2* resolution,
|
|
|
|
global float3* projection_matrix,
|
|
|
|
global float3* cam_dir,
|
|
|
|
global float3* cam_pos,
|
|
|
|
__write_only image2d_t image
|
|
|
|
){
|
|
|
|
|
|
|
|
size_t id = get_global_id(0);
|
|
|
|
|
|
|
|
int2 pixel = {id % resolution->x, id / resolution->x};
|
|
|
|
|
|
|
|
|
|
|
|
float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y];
|
|
|
|
//printf("%i === %f, %f, %f\n", id, ray_dir.x, ray_dir.y, ray_dir.z);
|
|
|
|
|
|
|
|
// Y axis, pitch
|
|
|
|
//ray_dir.x = ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y);
|
|
|
|
//ray_dir.y = ray_dir.y;
|
|
|
|
//ray_dir.z = ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y);
|
|
|
|
|
|
|
|
|
|
|
|
ray_dir = (float3)(
|
|
|
|
ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y),
|
|
|
|
ray_dir.y,
|
|
|
|
ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y)
|
|
|
|
);
|
|
|
|
|
|
|
|
// Z axis, yaw
|
|
|
|
//ray_dir.x = ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z);
|
|
|
|
//ray_dir.y = ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z);
|
|
|
|
//ray_dir.z = ray_dir.z;
|
|
|
|
|
|
|
|
ray_dir = (float3)(
|
|
|
|
ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z),
|
|
|
|
ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z),
|
|
|
|
ray_dir.z
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
// Setup the voxel step based on what direction the ray is pointing
|
|
|
|
int3 voxel_step = {1, 1, 1};
|
|
|
|
voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0);
|
|
|
|
voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0);
|
|
|
|
voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0);
|
|
|
|
|
|
|
|
// Setup the voxel coords from the camera origin
|
|
|
|
int3 voxel = {
|
|
|
|
floorf(cam_pos->x),
|
|
|
|
floorf(cam_pos->y),
|
|
|
|
floorf(cam_pos->z)
|
|
|
|
};
|
|
|
|
|
|
|
|
// Delta T is the units a ray must travel along an axis in order to
|
|
|
|
// traverse an integer split
|
|
|
|
float3 delta_t = {
|
|
|
|
fabsf(1.0f / ray_dir.x),
|
|
|
|
fabsf(1.0f / ray_dir.y),
|
|
|
|
fabsf(1.0f / ray_dir.z)
|
|
|
|
};
|
|
|
|
|
|
|
|
// Intersection T is the collection of the next intersection points
|
|
|
|
// for all 3 axis XYZ.
|
|
|
|
float3 intersection_t = {
|
|
|
|
delta_t.x,
|
|
|
|
delta_t.y,
|
|
|
|
delta_t.z
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
int dist = 0;
|
|
|
|
int face = -1;
|
|
|
|
// X:0, Y:1, Z:2
|
|
|
|
|
|
|
|
// Andrew Woo's raycasting algo
|
|
|
|
do {
|
|
|
|
if ((intersection_t.x) < (intersection_t.y)) {
|
|
|
|
if ((intersection_t.x) < (intersection_t.z)) {
|
|
|
|
|
|
|
|
face = 0;
|
|
|
|
voxel.x += voxel_step.x;
|
|
|
|
intersection_t.x = intersection_t.x + delta_t.x;
|
|
|
|
} else {
|
|
|
|
|
|
|
|
face = 2;
|
|
|
|
voxel.z += voxel_step.z;
|
|
|
|
intersection_t.z = intersection_t.z + delta_t.z;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if ((intersection_t.y) < (intersection_t.z)) {
|
|
|
|
|
|
|
|
face = 1;
|
|
|
|
voxel.y += voxel_step.y;
|
|
|
|
intersection_t.y = intersection_t.y + delta_t.y;
|
|
|
|
} else {
|
|
|
|
|
|
|
|
face = 2;
|
|
|
|
voxel.z += voxel_step.z;
|
|
|
|
intersection_t.z = intersection_t.z + delta_t.z;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the ray went out of bounds
|
|
|
|
if (voxel.z >= map_dim->z) {
|
|
|
|
write_imagef(image, pixel, (float4)(.5, .50, .00, 1));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (voxel.x >= map_dim->x) {
|
|
|
|
write_imagef(image, pixel, (float4)(.00, .00, .99, 1));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (voxel.y >= map_dim->x) {
|
|
|
|
write_imagef(image, pixel, (float4)(.00, .44, .00, 1));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (voxel.x < 0) {
|
|
|
|
write_imagef(image, pixel, (float4)(.99, .00, .99, 1));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (voxel.y < 0) {
|
|
|
|
write_imagef(image, pixel, (float4)(.99, .99, .00, 1));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (voxel.z < 0) {
|
|
|
|
write_imagef(image, pixel, (float4)(.00, .99, .99, 1));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we hit a voxel
|
|
|
|
int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z);
|
|
|
|
int voxel_data = map[index];
|
|
|
|
|
|
|
|
if (id == 240000)
|
|
|
|
printf("%i, %i, %i\n", voxel.x, voxel.y, voxel.z);
|
|
|
|
|
|
|
|
switch (voxel_data) {
|
|
|
|
case 1:
|
|
|
|
write_imagef(image, pixel, (float4)(.50, .00, .00, 1));
|
|
|
|
return;
|
|
|
|
case 2:
|
|
|
|
write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00));
|
|
|
|
if (id == 249000)
|
|
|
|
printf("%i\n", voxel_data);
|
|
|
|
return;
|
|
|
|
case 3:
|
|
|
|
write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00));
|
|
|
|
return;
|
|
|
|
case 4:
|
|
|
|
write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
|
|
|
|
return;
|
|
|
|
case 5:
|
|
|
|
write_imagef(image, pixel, (float4)(.10, .30, .80, 1.00));
|
|
|
|
return;
|
|
|
|
case 6:
|
|
|
|
write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
dist++;
|
|
|
|
} while (dist < 600);
|
|
|
|
|
|
|
|
|
|
|
|
write_imagef(image, pixel, (float4)(.00, .00, .00, .00));
|
|
|
|
return;
|
|
|
|
|
|
|
|
//printf("%i %i -- ", id, map[id]);
|
|
|
|
//printf("%i, %i, %i\n", map_dim->x, map_dim->y, map_dim->z);
|
|
|
|
//printf("\n%i\nX: %f\nY: %f\nZ: %f\n", id, projection_matrix[id].x, projection_matrix[id].y, projection_matrix[id].z);
|
|
|
|
//printf("%f, %f, %f\n", cam_dir->x, cam_dir->y, cam_dir->z);
|
|
|
|
//printf("%f, %f, %f\n", cam_pos->x, cam_pos->y, cam_pos->z);
|
|
|
|
|
|
|
|
}
|