You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

465 lines
12 KiB

#include <iostream>
#include <chrono>
#include <fstream>
#include <sstream>
#include <SFML/Graphics.hpp>
#include <GL/glew.h>
#ifdef linux
#include <CL/cl.h>
#include <CL/opencl.h>
#elif defined _WIN32
#include <CL/cl_gl.h>
#include <CL/cl.h>
#include <CL/opencl.h>
#include <windows.h>
#elif defined TARGET_OS_MAC
# include <OpenGL/OpenGL.h>
# include <OpenCL/opencl.h>
#endif
#include "TestPlatform.cpp"
#include "Map.h"
#include "Curses.h"
#include "util.hpp"
#include "RayCaster.h"
const int WINDOW_X = 150;
const int WINDOW_Y = 150;
std::string read_file(std::string file_name){
std::ifstream input_file(file_name);
if (!input_file.is_open()){
std::cout << file_name << " could not be opened" << std::endl;
return nullptr;
}
std::stringstream buf;
buf << input_file.rdbuf();
return buf.str();
}
int main(){
int error = 0;
// ===================================================================== //
// ==== Opencl setup
// Get the number of platforms
cl_uint platform_count = 0;
clGetPlatformIDs(0, nullptr, &platform_count);
// Fetch the platforms
std::vector<cl_platform_id> platformIds(platform_count);
clGetPlatformIDs(platform_count, platformIds.data(), nullptr);
// Print out this machines info
std::cout << "============ Hardware info =================" << std::endl;
for (unsigned int i = 0; i < platform_count; i++) {
std::cout << "--Platform: " << i << std::endl;
char platform[128];
char version[128];
clGetPlatformInfo(platformIds[i], CL_PLATFORM_NAME, 128, platform, NULL);
clGetPlatformInfo(platformIds[i], CL_PLATFORM_VERSION, 128, version, NULL);
std::cout << platform << "\n";
std::cout << version << "\n\n";
// get the number of devices, fetch them, choose the first one
cl_uint deviceIdCount = 0;
error = clGetDeviceIDs(platformIds[i], CL_DEVICE_TYPE_ALL, 0, nullptr, &deviceIdCount);
std::vector<cl_device_id> deviceIds(deviceIdCount);
for (int q = 0; q < deviceIdCount; q++) {
std::cout << "++++Device " << q << std::endl;
error = clGetDeviceIDs(platformIds[i], CL_DEVICE_TYPE_ALL, deviceIdCount, deviceIds.data(), NULL);
clGetDeviceInfo(deviceIds[q], CL_DEVICE_NAME, 128, platform, NULL);
clGetDeviceInfo(deviceIds[q], CL_DEVICE_VERSION, 128, version, NULL);
std::cout << platform << "\n";
std::cout << version << "\n\n";
}
}
std::cout << "============================================" << std::endl;
cl_uint deviceIdCount = 0;
std::vector<cl_device_id> deviceIds;
// Try to get a GPU first
error = clGetDeviceIDs(platformIds[1], CL_DEVICE_TYPE_GPU, 0, nullptr,
&deviceIdCount);
if (deviceIdCount == 0) {
std::cout << "couldn't acquire a GPU, falling back to CPU" << std::endl;
error = clGetDeviceIDs(platformIds[1], CL_DEVICE_TYPE_CPU, 0, nullptr, &deviceIdCount);
deviceIds.resize(deviceIdCount);
error = clGetDeviceIDs(platformIds[1], CL_DEVICE_TYPE_CPU, deviceIdCount, deviceIds.data(), NULL);
} else {
std::cout << "acquired GPU cl target" << std::endl;
deviceIds.resize(deviceIdCount);
clGetDeviceIDs (platformIds[1], CL_DEVICE_TYPE_GPU, deviceIdCount, deviceIds.data (), nullptr);
}
if (error != 0){
std::cout << "Err: clGetDeviceIDs returned: " << error << std::endl;
return error;
}
// Hurray for standards!
// Setup the context properties to grab the current GL context
#ifdef linux
cl_context_properties context_properties[] = {
CL_GL_CONTEXT_KHR, (cl_context_properties) glXGetCurrentContext(),
CL_GLX_DISPLAY_KHR, (cl_context_properties) glXGetCurrentDisplay(),
CL_CONTEXT_PLATFORM, (cl_context_properties) platform,
0
};
#elif defined _WIN32
//cl_context_properties context_properties[] = {
// CL_CONTEXT_PLATFORM, (cl_context_properties) platformIds[0],
// CL_GL_CONTEXT_KHR, (cl_context_properties) wglGetCurrentContext(),
// CL_WGL_HDC_KHR, (cl_context_properties) wglGetCurrentDC(),
// 0
//};
HGLRC hGLRC = wglGetCurrentContext();
HDC hDC = wglGetCurrentDC();
cl_context_properties context_properties[] = { CL_CONTEXT_PLATFORM, (cl_context_properties)platformIds[1], CL_GL_CONTEXT_KHR, (cl_context_properties)hGLRC, CL_WGL_HDC_KHR, (cl_context_properties)hDC, 0 };
#elif defined TARGET_OS_MAC
CGLContextObj glContext = CGLGetCurrentContext();
CGLShareGroupObj shareGroup = CGLGetShareGroup(glContext);
cl_context_properties context_properties[] = {
CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
(cl_context_properties)shareGroup,
0
};
#endif
// Create our shared context
auto context = clCreateContext(
context_properties,
1,
&deviceIds[0],
nullptr, nullptr,
&error
);
//cl_device_id devices[32];
//size_t size;
//clGetGLContextInfoKHR(context_properties, CL_DEVICES_FOR_GL_CONTEXT_KHR,
// 32 * sizeof(cl_device_id), devices, &size);
if (error != 0){
std::cout << "Err: clCreateContext returned: " << error << std::endl;
return error;
}
// And the cl command queue
auto commandQueue = clCreateCommandQueue(context, deviceIds[0], 0, &error);
if (error != 0){
std::cout << "Err: clCreateCommandQueue returned: " << error << std::endl;
return error;
}
// At this point the shared GL/CL context is up and running
// ====================================================================== //
// ========== Kernel setup & compilation
// Load in the kernel, and c stringify it
std::string kernel_source;
kernel_source = read_file("../kernels/kernel.txt");
const char* kernel_source_c_str = kernel_source.c_str();
size_t kernel_source_size = strlen(kernel_source_c_str);
// Load the source into CL's data structure
cl_program kernel_program = clCreateProgramWithSource(
context, 1,
&kernel_source_c_str,
&kernel_source_size, &error
);
if (error != 0){
std::cout << "Err: clCreateProgramWithSource returned: " << error << std::endl;
return error;
}
// Try and build the program
error = clBuildProgram(kernel_program, 1, &deviceIds[0], NULL, NULL, NULL);
// Check to see if it errored out
if (error == CL_BUILD_PROGRAM_FAILURE){
// Get the size of the queued log
size_t log_size;
clGetProgramBuildInfo(kernel_program, deviceIds[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *log = new char[log_size];
// Grab the log
clGetProgramBuildInfo(kernel_program, deviceIds[0], CL_PROGRAM_BUILD_LOG, log_size, log, NULL);
std::cout << "Err: clBuildProgram returned: " << error << std::endl;
std::cout << log << std::endl;
return error;
}
// Done initializing the kernel
cl_kernel finished_kernel = clCreateKernel(kernel_program, "kernel_name", &error);
if (error != 0){
std::cout << "Err: clCreateKernel returned: " << error << std::endl;
return error;
}
};
float elap_time(){
static std::chrono::time_point<std::chrono::system_clock> start;
static bool started = false;
if (!started){
start = std::chrono::system_clock::now();
started = true;
}
std::chrono::time_point<std::chrono::system_clock> now = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_time = now - start;
return elapsed_time.count();
}
sf::Sprite window_sprite;
sf::Texture window_texture;
// Y: -1.57 is straight up
// Y: 1.57 is straight down
void test_ray_reflection(){
sf::Vector3f r(0.588, -0.78, -0.196);
sf::Vector3f i(0, 0.928, 0.37);
// is this needed? free spin but bounded 0 < z < pi
if (i.z > PI)
i.z -= PI;
else if (i.z < 0)
i.z += PI;
std::cout << AngleBetweenVectors(r, i);
return;
}
int main0() {
// Initialize the render window
Curses curse(sf::Vector2i(5, 5), sf::Vector2i(WINDOW_X, WINDOW_Y));
sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML");
// The step size in milliseconds between calls to Update()
// Lets set it to 16.6 milliseonds (60FPS)
float step_size = 0.0166f;
// Timekeeping values for the loop
double frame_time = 0.0,
elapsed_time = 0.0,
delta_time = 0.0,
accumulator_time = 0.0,
current_time = 0.0;
fps_counter fps;
// ============================= RAYCASTER SETUP ==================================
// Setup the sprite and texture
window_texture.create(WINDOW_X, WINDOW_Y);
window_sprite.setPosition(0, 0);
// State values
sf::Vector3i map_dim(100, 100, 100);
sf::Vector2i view_res(WINDOW_X, WINDOW_Y);
sf::Vector3f cam_dir(1.0f, 0.0f, 1.57f);
sf::Vector3f cam_pos(50, 50, 50);
sf::Vector3f cam_vec(0, 0, 0);
Map* map = new Map(map_dim);
RayCaster ray_caster(map, map_dim, view_res);
// ===============================================================================
// Mouse capture
sf::Vector2i deltas;
sf::Vector2i fixed(window.getSize());
bool mouse_enabled = true;
while (window.isOpen()) {
// Poll for events from the user
sf::Event event;
while (window.pollEvent(event)) {
// If the user tries to exit the application via the GUI
if (event.type == sf::Event::Closed)
window.close();
}
cam_vec.x = 0;
cam_vec.y = 0;
cam_vec.z = 0;
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Q)) {
cam_vec.z = 1;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::E)) {
cam_vec.z = -1;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::W)) {
cam_vec.y = 1;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::S)) {
cam_vec.y = -1;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::A)) {
cam_vec.x = 1;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::D)) {
cam_vec.x = -1;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left)) {
cam_dir.z = -0.1f;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Right)) {
cam_vec.z = +0.1f;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Down)) {
cam_vec.y = +0.1f;
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Up)) {
cam_vec.y = -0.1f;
}
deltas = fixed - sf::Mouse::getPosition();
if (deltas != sf::Vector2i(0, 0) && mouse_enabled == true) {
// Mouse movement
sf::Mouse::setPosition(fixed);
cam_dir.y -= deltas.y / 300.0f;
cam_dir.z -= deltas.x / 300.0f;
}
cam_pos.x += cam_vec.x / 1.0;
cam_pos.y += cam_vec.y / 1.0;
cam_pos.z += cam_vec.z / 1.0;
// if (cam_vec.x > 0.0f)
// cam_vec.x -= 0.1;
// else if (cam_vec.x < 0.0f)
// cam_vec.x += 0.1;
//
// if (cam_vec.y > 0.0f)
// cam_vec.y -= 0.1;
// else if (cam_vec.y < 0.0f)
// cam_vec.y += 0.1;
//
// if (cam_vec.z > 0.0f)
// cam_vec.z -= 0.1;
// else if (cam_vec.z < 0.0f)
// cam_vec.z += 0.1;
std::cout << cam_vec.x << " : " << cam_vec.y << " : " << cam_vec.z << std::endl;
// Time keeping
elapsed_time = elap_time();
delta_time = elapsed_time - current_time;
current_time = elapsed_time;
if (delta_time > 0.2f)
delta_time = 0.2f;
accumulator_time += delta_time;
while ((accumulator_time - step_size) >= step_size) {
accumulator_time -= step_size;
// Update cycle
curse.Update(delta_time);
}
// Fps cycle
// map->moveLight(sf::Vector2f(0.3, 0));
window.clear(sf::Color::Black);
// Cast the rays and get the image
sf::Color* pixel_colors = ray_caster.CastRays(cam_dir, cam_pos);
for (int i = 0; i < WINDOW_X * WINDOW_Y; i++) {
Curses::Tile t(sf::Vector2i(i % WINDOW_X, i / WINDOW_X));
Curses::Slot s(L'\u0045', pixel_colors[i], sf::Color::Black);
t.push_back(s);
curse.setTile(t);
}
// Cast it to an array of Uint8's
auto out = (sf::Uint8*)pixel_colors;
window_texture.update(out);
window_sprite.setTexture(window_texture);
window.draw(window_sprite);
curse.Render();
// Give the frame counter the frame time and draw the average frame time
fps.frame(delta_time);
fps.draw(&window);
window.display();
}
return 0;
}