|
|
|
@ -5,7 +5,7 @@ float4 white_light(float4 input, float3 light, int3 mask) {
|
|
|
|
|
input.w = input.w + acos(
|
|
|
|
|
dot(
|
|
|
|
|
normalize(light),
|
|
|
|
|
normalize(fabs(convert_float3(mask)))
|
|
|
|
|
normalize(convert_float3(mask * (-mask)))
|
|
|
|
|
)
|
|
|
|
|
) / 2;
|
|
|
|
|
|
|
|
|
@ -13,6 +13,31 @@ float4 white_light(float4 input, float3 light, int3 mask) {
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float4 view_light(float4 in_color, float3 light, float3 view, int3 mask) {
|
|
|
|
|
|
|
|
|
|
float diffuse = max(dot(normalize(convert_float3(mask)), normalize(light)), 0.0f);
|
|
|
|
|
if (dot(light, normalize(convert_float3(mask))) > 0.0)
|
|
|
|
|
{
|
|
|
|
|
float3 halfwayVector = normalize(normalize(light) + normalize(view));
|
|
|
|
|
float specTmp = max(dot(normalize(convert_float3(mask)), halfwayVector), 0.0f);
|
|
|
|
|
return in_color + pow(specTmp, 1.0f) * 0.01 +diffuse * 0.5;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//float3 halfwayDir = normalize(normalize(view) + normalize(light));
|
|
|
|
|
//float spec = pow(max(dot(normalize(convert_float3(mask)), halfwayDir), 0.0f), 32.0f);
|
|
|
|
|
in_color.w += 0.2;
|
|
|
|
|
return in_color;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void cast_ray(float3 ray_origin, float3 ray_direction) {
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 0 1 2 3 4 5 6 7 8 9
|
|
|
|
|
// {r, g, b, i, x, y, z, x', y', z'}
|
|
|
|
|
|
|
|
|
@ -99,21 +124,21 @@ __kernel void raycaster(
|
|
|
|
|
global int* seed_memory
|
|
|
|
|
){
|
|
|
|
|
|
|
|
|
|
// Get and set the random seed from seed memory
|
|
|
|
|
int global_id = get_global_id(0);
|
|
|
|
|
|
|
|
|
|
// Get and set the random seed from seed memory
|
|
|
|
|
int seed = seed_memory[global_id];
|
|
|
|
|
int random_number = rand(&seed);
|
|
|
|
|
seed_memory[global_id] = seed;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size_t id = get_global_id(0);
|
|
|
|
|
int2 pixel = {id % (*resolution).x, id / (*resolution).x};
|
|
|
|
|
// Get the pixel on the viewport, and find the view matrix ray that matches it
|
|
|
|
|
int2 pixel = { global_id % (*resolution).x, global_id / (*resolution).x};
|
|
|
|
|
float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y];
|
|
|
|
|
|
|
|
|
|
if (pixel.x == 960 && pixel.y == 540) {
|
|
|
|
|
write_imagef(image, pixel, (float4)(0.00, 1.00, 0.00, 1.00));
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
//if (pixel.x == 960 && pixel.y == 540) {
|
|
|
|
|
// write_imagef(image, pixel, (float4)(0.00, 1.00, 0.00, 1.00));
|
|
|
|
|
// return;
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
// Pitch
|
|
|
|
|
ray_dir = (float3)(
|
|
|
|
@ -160,67 +185,53 @@ __kernel void raycaster(
|
|
|
|
|
intersection_t.z += delta_t.z;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// use a ghetto ass rng to give rays a "fog" appearance
|
|
|
|
|
int2 randoms = { random_number, 14 };
|
|
|
|
|
uint tseed = randoms.x + id;
|
|
|
|
|
uint t = tseed ^ (tseed << 11);
|
|
|
|
|
uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
|
|
|
|
|
|
|
|
|
|
int max_dist = 800 + result % 100;
|
|
|
|
|
// Hard cut-off for how far the ray can travel
|
|
|
|
|
int max_dist = 800;
|
|
|
|
|
int dist = 0;
|
|
|
|
|
|
|
|
|
|
int3 mask = { 0, 0, 0 };
|
|
|
|
|
float4 color = { 0.73, 0.81, 0.89, 0.6 };
|
|
|
|
|
float4 c = (float4)(0.60, 0.00, 0.40, 0.1);
|
|
|
|
|
c.x += (result % 100) / 10;
|
|
|
|
|
|
|
|
|
|
int3 face_mask = { 0, 0, 0 };
|
|
|
|
|
float4 fog_color = { 0.73, 0.81, 0.89, 0.8 };
|
|
|
|
|
float4 voxel_color = (float4)(0.25, 0.52, 0.30, 0.1);
|
|
|
|
|
float4 overshoot_color = { 0.25, 0.48, 0.52, 0.8 };
|
|
|
|
|
|
|
|
|
|
// Andrew Woo's raycasting algo
|
|
|
|
|
do {
|
|
|
|
|
|
|
|
|
|
mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
|
|
|
|
|
intersection_t += delta_t * fabs(convert_float3(mask.xyz));
|
|
|
|
|
voxel.xyz += voxel_step.xyz * mask.xyz;
|
|
|
|
|
// Fancy no branch version of the logic step
|
|
|
|
|
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
|
|
|
|
|
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
|
|
|
|
|
voxel.xyz += voxel_step.xyz * face_mask.xyz;
|
|
|
|
|
|
|
|
|
|
// If the ray went out of bounds
|
|
|
|
|
int3 overshoot = voxel <= *map_dim;
|
|
|
|
|
int3 undershoot = voxel > 0;
|
|
|
|
|
|
|
|
|
|
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){
|
|
|
|
|
write_imagef(image, pixel, white_light(mix(color, (float4)(0.40, 0.00, 0.40, 0.2), 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), mask));
|
|
|
|
|
write_imagef(image, pixel, white_light(mix(fog_color, overshoot_color, 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
if (undershoot.z == 0) {
|
|
|
|
|
write_imagef(image, pixel, white_light(mix(color, (float4)(0.40, 0.00, 0.40, 0.2), 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), mask));
|
|
|
|
|
write_imagef(image, pixel, white_light(mix(fog_color, overshoot_color, 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we hit a voxel
|
|
|
|
|
//int index = voxel.x * (*map_dim).y * (*map_dim).z + voxel.z * (*map_dim).z + voxel.y;
|
|
|
|
|
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z));
|
|
|
|
|
int voxel_data = map[index];
|
|
|
|
|
|
|
|
|
|
if (voxel_data != 0) {
|
|
|
|
|
switch (voxel_data) {
|
|
|
|
|
case 1:
|
|
|
|
|
write_imagef(image, pixel, (float4)(.50, .00, .00, 1));
|
|
|
|
|
return;
|
|
|
|
|
case 2:
|
|
|
|
|
write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00));
|
|
|
|
|
return;
|
|
|
|
|
case 3:
|
|
|
|
|
write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00));
|
|
|
|
|
return;
|
|
|
|
|
case 4:
|
|
|
|
|
write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
case 5:
|
|
|
|
|
|
|
|
|
|
//write_imagef(image, pixel, (float4)(0.40, 0.00, 0.40, 0.2));
|
|
|
|
|
write_imagef(image, pixel, white_light(mix(color, c, 1.0 - max((dist/700.0f) - 0.3f, (float)0)), (float3)(lights[7], lights[8], lights[9]), mask));
|
|
|
|
|
write_imagef(image, pixel, view_light(voxel_color, (convert_float3(voxel) + offset) - (float3)(lights[4], lights[5], lights[6]), (convert_float3(voxel) + offset) - (*cam_pos), face_mask));
|
|
|
|
|
//write_imagef(image, pixel, white_light(mix(fog_color, voxel_color, 1.0 - max((dist/700.0f) - 0.3f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
float3 vox = convert_float3(voxel);
|
|
|
|
|
float3 norm = normalize(convert_float3(mask) * convert_float3(voxel_step));
|
|
|
|
|
float3 norm = normalize(convert_float3(face_mask) * convert_float3(voxel_step));
|
|
|
|
|
float4 color = (float4)(0.95, 0.00, 0.25, 1.00);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -235,12 +246,16 @@ __kernel void raycaster(
|
|
|
|
|
));
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
case 6:
|
|
|
|
|
write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00));
|
|
|
|
|
write_imagef(image, pixel, view_light((float4)(0.0, 0.239, 0.419, 0.3), (convert_float3(voxel) + offset) - (float3)(lights[4], lights[5], lights[6]), (convert_float3(voxel) + offset) - (*cam_pos), face_mask));
|
|
|
|
|
//write_imagef(image, pixel, white_light(mix((float4)(0.73, 0.81, 0.89, 0.6), (float4)(0.0, 0.239, 0.419, 0.3), 1.0 - max((dist / 700.0f) - 0.3f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
//write_imagef(image, pixel, (float4)(.30, .10, .10, 1.00));
|
|
|
|
|
write_imagef(image, pixel, (float4)(.30, .10, .10, 1.00));
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -249,7 +264,7 @@ __kernel void raycaster(
|
|
|
|
|
|
|
|
|
|
} while (dist / 700.0f < 1);
|
|
|
|
|
//dist < max_dist
|
|
|
|
|
write_imagef(image, pixel, white_light(mix(color, (float4)(0.40, 0.00, 0.40, 0.2), 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), mask));
|
|
|
|
|
write_imagef(image, pixel, white_light(mix(fog_color, (float4)(0.40, 0.00, 0.40, 0.2), 1.0 - max(dist / 700.0f, (float)0)), (float3)(lights[7], lights[8], lights[9]), face_mask));
|
|
|
|
|
//write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0));
|
|
|
|
|
return;
|
|
|
|
|
}
|