diff --git a/kernels/minimal_kernel.cl b/kernels/minimal_kernel.cl index ecc5669..30f0740 100644 --- a/kernels/minimal_kernel.cl +++ b/kernels/minimal_kernel.cl @@ -25,35 +25,24 @@ __kernel void min_kern( __write_only image2d_t image ){ - + // Get the pixel position of this worker size_t id = get_global_id(0); int2 pixel = {id % resolution->x, id / resolution->x}; - //int2 pixel = {1, 1}; + + + // Slew the ray into it's correct position based on the view matrix's starting position + // and the camera's current direction float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y]; + // Yaw ray_dir = (float3)( ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y), ray_dir.y, ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y) ); -// -// float a = cam_dir->x; -// float b = cam_dir->y; -// float c = cam_dir->z; -// -// ray_dir.x = ray_dir.z * sin(b) + ray_dir.x * cos(b); -// ray_dir.y = ray_dir.y; -// ray_dir.z = ray_dir.z * cos(b) - ray_dir.x * sin(b); -// -// -// float3 ray_dir2 = (float3)( -// ray_dir.x * cos(c) - ray_dir.y * sin(c), -// ray_dir.x * sin(c) + ray_dir.y * cos(c), -// ray_dir.z); -// -// printf("%f, %f, %f", ray_dir2.x, ray_dir2.y, ray_dir2.z); + // Pitch ray_dir = (float3)( ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z), ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z), @@ -64,10 +53,6 @@ __kernel void min_kern( int3 voxel_step = {1, 1, 1}; voxel_step *= (ray_dir > 0) - (ray_dir < 0); - /*voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0); - voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0); - voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0);*/ - // Setup the voxel coords from the camera origin int3 voxel = convert_int3(*cam_pos); @@ -79,21 +64,26 @@ __kernel void min_kern( // for all 3 axis XYZ. float3 intersection_t = delta_t; + // Create a psuedo random number for view fog int2 randoms = { 3, 14 }; uint seed = randoms.x + id; uint t = seed ^ (seed << 11); uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8)); - int max_dist = 500 + result % 50; + // Distance a ray can travel before it terminates + int max_dist = 200 + result % 50; int dist = 0; + // Bitmask to keep track of which axis was tripped int3 mask = { 0, 0, 0 }; // Andrew Woo's raycasting algo do { + // Non-branching test of the lowest delta_t value mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy); - float3 thing = delta_t * fabs(convert_float3(mask.xyz)); + + // Based on the result increment the voxel and intersection intersection_t += delta_t * fabs(convert_float3(mask.xyz)); voxel.xyz += voxel_step.xyz * mask.xyz; @@ -101,12 +91,15 @@ __kernel void min_kern( int3 overshoot = voxel <= *map_dim; int3 undershoot = voxel > 0; + // "Sky" if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){ - write_imageui(image, pixel, (uint4)(50, 50, 50, 255)); + write_imageui(image, pixel, (uint4)(135, 206, 235, 255)); return; } + + // "Water" if (undershoot.z == 0) { - write_imageui(image, pixel, (uint4)(14, 30, 50, 255)); + write_imageui(image, pixel, (uint4)(64, 164, 223, 255)); return; } @@ -130,7 +123,7 @@ __kernel void min_kern( return; case 5: //write_imageui(image, pixel, (uint4)(200, 200, 200, 255)); - write_imageui(image, pixel, white_light((uint4)(225, 232, 214, 100), (float3)(lights[7], lights[8], lights[9]), mask)); + write_imageui(image, pixel, white_light((uint4)(44, 176, 55, 100), (float3)(lights[7], lights[8], lights[9]), mask)); return; case 6: write_imageui(image, pixel, (uint4)(30, 80, 10, 255)); @@ -141,6 +134,6 @@ __kernel void min_kern( dist++; } while (dist < max_dist); - write_imageui(image, pixel, (uint4)(73, 81, 89, 255)); + write_imageui(image, pixel, (uint4)(135, 206, 235, 255)); return; } \ No newline at end of file