|
|
|
@ -10,12 +10,43 @@ Octree::Octree() {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void Octree::Generate(char* data, sf::Vector3i dimensions) {
|
|
|
|
|
|
|
|
|
|
// Launch the recursive generator at (0,0,0) as the first point
|
|
|
|
|
// and the octree dimension as the initial block size
|
|
|
|
|
std::tuple<uint64_t, uint64_t> root_node = GenerationRecursion(data, dimensions, sf::Vector3i(0, 0, 0), OCT_DIM/2);
|
|
|
|
|
|
|
|
|
|
// ========= DEBUG ==============
|
|
|
|
|
PrettyPrintUINT64(std::get<0>(root_node), &output_stream);
|
|
|
|
|
output_stream << " " << OCT_DIM << " " << counter++ << std::endl;
|
|
|
|
|
// ==============================
|
|
|
|
|
|
|
|
|
|
// ============= TEMP!!! ===================
|
|
|
|
|
if (stack_pos - 1 > stack_pos) {
|
|
|
|
|
global_pos -= stack_pos;
|
|
|
|
|
stack_pos = 0x8000;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
stack_pos -= 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
memcpy(&descriptor_buffer[stack_pos + global_pos], &std::get<0>(root_node), 1 * sizeof(uint64_t));
|
|
|
|
|
// ========================================
|
|
|
|
|
|
|
|
|
|
DumpLog(&output_stream, "raw_output.txt");
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Copy to stack enables the hybrid depth-breadth first tree by taking
|
|
|
|
|
// a list of valid non-leaf child descriptors contained under a common parent.
|
|
|
|
|
|
|
|
|
|
// It takes the list of children, and the current level in the voxel hierarchy.
|
|
|
|
|
// It returns the index to the first element of the
|
|
|
|
|
|
|
|
|
|
// This is all fine and dandy, but we have the problem where we need to assign
|
|
|
|
|
// relative pointers to objects so we need to keep track of where their children are
|
|
|
|
|
// being assigned.
|
|
|
|
|
|
|
|
|
|
uint64_t Octree::copy_to_stack(std::vector<uint64_t> children, unsigned int voxel_scale) {
|
|
|
|
|
|
|
|
|
|
// Check for the 15 bit boundry
|
|
|
|
@ -166,3 +197,106 @@ void Octree::print_block(int block_pos) {
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::tuple<uint64_t, uint64_t> Octree::GenerationRecursion(char* data, sf::Vector3i dimensions, sf::Vector3i pos, unsigned int voxel_scale) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
|
|
|
|
|
// XY, Z++, XY
|
|
|
|
|
std::vector<sf::Vector3i> v = {
|
|
|
|
|
sf::Vector3i(pos.x , pos.y , pos.z),
|
|
|
|
|
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z),
|
|
|
|
|
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z),
|
|
|
|
|
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z),
|
|
|
|
|
sf::Vector3i(pos.x , pos.y , pos.z + voxel_scale),
|
|
|
|
|
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z + voxel_scale),
|
|
|
|
|
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z + voxel_scale),
|
|
|
|
|
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale)
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// A tuple holding the child descriptor that we're going to fill out and the
|
|
|
|
|
// absolute position of it within the descriptor buffer
|
|
|
|
|
std::tuple<uint64_t, uint64_t> descriptor_and_position(0, 0);
|
|
|
|
|
|
|
|
|
|
// If we hit the 1th voxel scale then we need to query the 3D grid
|
|
|
|
|
// and get the voxel at that position. I assume in the future when I
|
|
|
|
|
// want to do chunking / loading of raw data I can edit the voxel access
|
|
|
|
|
if (voxel_scale == 1) {
|
|
|
|
|
|
|
|
|
|
// Setting the individual valid mask bits
|
|
|
|
|
// These don't bound check, should they?
|
|
|
|
|
for (int i = 0; i < v.size(); i++) {
|
|
|
|
|
if (get1DIndexedVoxel(data, dimensions, v.at(i)))
|
|
|
|
|
SetBit(i + 16, &std::get<0>(descriptor_and_position));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// We are querying leafs, so we need to fill the leaf mask
|
|
|
|
|
std::get<0>(descriptor_and_position) |= 0xFF000000;
|
|
|
|
|
|
|
|
|
|
// The CP will be left blank, contour mask and ptr will need to
|
|
|
|
|
// be added here later
|
|
|
|
|
return descriptor_and_position;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<std::tuple<uint64_t, uint64_t>> descriptor_position_array;
|
|
|
|
|
|
|
|
|
|
// Generate down the recursion, returning the descriptor of the current node
|
|
|
|
|
for (int i = 0; i < v.size(); i++) {
|
|
|
|
|
|
|
|
|
|
std::tuple<uint64_t, uint64_t> child(0, 0);
|
|
|
|
|
|
|
|
|
|
// Get the child descriptor from the i'th to 8th subvoxel
|
|
|
|
|
child = GenerationRecursion(data, dimensions, v.at(i), voxel_scale / 2);
|
|
|
|
|
|
|
|
|
|
// =========== Debug ===========
|
|
|
|
|
PrettyPrintUINT64(std::get<0>(child), &output_stream);
|
|
|
|
|
output_stream << " " << voxel_scale << " " << counter++ << std::endl;
|
|
|
|
|
// =============================
|
|
|
|
|
|
|
|
|
|
// If the child is a leaf (contiguous) of non-valid values
|
|
|
|
|
if (IsLeaf(std::get<0>(child)) && !CheckLeafSign(std::get<0>(child))) {
|
|
|
|
|
// Leave the valid mask 0, set leaf mask to 1
|
|
|
|
|
SetBit(i + 16 + 8, &std::get<0>(descriptor_and_position));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If the child is valid and not a leaf
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
|
|
// Set the valid mask, and add it to the descriptor array
|
|
|
|
|
SetBit(i + 16, &std::get<0>(descriptor_and_position));
|
|
|
|
|
descriptor_position_array.push_back(child);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// We are working bottom up so we need to subtract from the stack position
|
|
|
|
|
// the amount of elements we want to use
|
|
|
|
|
|
|
|
|
|
for (auto desc_pos: descriptor_position_array) {
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (stack_pos - descriptor_array.size() > stack_pos) {
|
|
|
|
|
global_pos = stack_pos;
|
|
|
|
|
stack_pos = 0x8000;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
stack_pos -= descriptor_array.size();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
memcpy(&descriptor_buffer[stack_pos + global_pos], descriptor_array.data(), descriptor_array.size() * sizeof(uint64_t));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Return the node up the stack
|
|
|
|
|
return descriptor_and_position;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
char Octree::get1DIndexedVoxel(char* data, sf::Vector3i dimensions, sf::Vector3i position) {
|
|
|
|
|
return data[position.x + OCT_DIM * (position.y + OCT_DIM * position.z)];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|